API Reference
This page contains the complete API documentation for all modules and classes
in the ds_tool
library.
ds_tool.DSTools
Data Science Tools for research and analysis.
Agenda:
function_list
Prints the list of available tools
compute_metrics
Calculate main pre-selected classification metrics
corr_matrix
Calculate and visualize correlation matrix
category_stats
Calculate and print categorical statistics (unique values analysis)
sparse_calc
Calculate sparsity level as coefficient
trials_res_df
Aggregate Optuna optimization trials as DataFrame
labeling
Encode categorical variables with optional ordering
remove_outliers_iqr
Remove outliers using IQR method
stat_normal_testing
Perform D'Agostino's K² test for normality
test_stationarity
Perform Dickey-Fuller test for stationarity
check_NINF
Check for NaN and infinite values in DataFrame
df_stats
Quick overview of DataFrame structure
describe_categorical
Detailed description of categorical columns
describe_numeric
Detailed description of numerical columns
generate_distribution
Generate synthetic numerical distribution with specific statistical properties
validate_moments
Helper method to check if the requested statistical moments are physically possible
evaluate_classification
Calculates, prints, and visualizes metrics for a binary classification model
grubbs_test
Performs Grubbs' test to identify a single outlier in a dataset
plot_confusion_matrix
Plots a clear and readable confusion matrix using seaborn
add_missing_value_features
Adds features based on the count of missing values per row
chatterjee_correlation
Calculates Chatterjee's rank correlation coefficient (Xi) between two variables.
calculate_entropy
Calculates the Shannon entropy of a probability distribution.
calculate_kl_divergence
Calculates the Kullback-Leibler (KL) divergence between two probability distributions.
min_max_scale
Scales specified columns of a DataFrame to the range [0, 1].
save_dataframes_to_zip
Saves one or more Pandas/Polars DataFrames into a single ZIP archive.
read_dataframes_from_zip
Reads one or more Pandas/Polars DataFrames from a ZIP archive.
generate_alphanum_codes
Generates an array of random alphanumeric codes of a specified length.
generate_distribution_from_metrics
Generates a synthetic distribution of numbers matching given statistical metrics.
Source code in src/ds_tool.py
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 |
|
__init__()
Initialize the DSTools class with default configurations.
Source code in src/ds_tool.py
221 222 223 224 225 226 227 228 229 230 231 232 233 |
|
add_missing_value_features(X, add_std=False)
staticmethod
Adds features based on the count of missing values per row.
This preprocessing function calculates the number of missing values (NaN) for each row and adds this count as a new feature. This can significantly improve the performance of some machine learning models.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X
|
Union[DataFrame, DataFrame]
|
The input DataFrame (Pandas or Polars). |
required |
add_std
|
bool
|
If True, also adds the standard deviation of the nullity mask as a feature (rarely used). |
False
|
Returns:
Type | Description |
---|---|
Union[DataFrame, DataFrame]
|
A new DataFrame with the added feature(s). The original DataFrame |
Union[DataFrame, DataFrame]
|
is not modified. |
Usage
tools = DSTools() pd_with_features = tools.add_missing_value_features(pd_data) print("\nPandas DataFrame with new feature:") print(pd_with_features)
pl_with_features = tools.add_missing_value_features(pl_data) print("\nPolars DataFrame with new feature:") print(pl_with_features)
Source code in src/ds_tool.py
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 |
|
calculate_entropy(p, base=None)
staticmethod
Calculates the Shannon entropy of a probability distribution.
Entropy measures the uncertainty or "surprise" inherent in a variable's possible outcomes.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
p
|
Union[ndarray, List[float]]
|
A 1D array-like object representing a probability distribution. The sum of its elements should be close to 1. |
required |
base
|
Optional[float]
|
The logarithmic base to use for the calculation. If None (default), the natural logarithm (ln) is used, and the result is in "nats". Use base=2 for the result in "bits". |
None
|
Returns:
Type | Description |
---|---|
float
|
The calculated entropy as a float. |
Raises:
Type | Description |
---|---|
ValueError
|
If the input array contains negative values. |
Usage
tools = DSTools() print("\nCalculating Entropy (in nats):") entropy_a = tools.calculate_entropy(dist_a) entropy_uniform = tools.calculate_entropy(dist_uniform) print(f" - Entropy of A [0.1, 0.2, 0.7]: {entropy_a:.4f}") print(f" - Entropy of Uniform [0.33, 0.33, 0.33]: {entropy_uniform:.4f} (should be highest)")
entropy_a_bits = tools.calculate_entropy(dist_a, base=2) print(f" - Entropy of A in bits: {entropy_a_bits:.4f}")
Source code in src/ds_tool.py
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 |
|
calculate_kl_divergence(p, q, base=None)
staticmethod
Calculates the Kullback-Leibler (KL) divergence between two distributions.
KL divergence D_KL(P || Q) measures how one probability distribution P diverges from a second, expected probability distribution Q. It is asymmetric.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
p
|
Union[ndarray, List[float]]
|
A 1D array-like object for the "true" or reference distribution (P). |
required |
q
|
Union[ndarray, List[float]]
|
A 1D array-like object for the "approximating" distribution (Q). |
required |
base
|
Optional[float]
|
The logarithmic base to use. Defaults to natural log (nats). |
None
|
Returns:
Type | Description |
---|---|
float
|
The KL divergence as a float. |
Raises:
Type | Description |
---|---|
ValueError
|
If input arrays have different lengths or contain negative values. |
Usage
print("\nCalculating KL Divergence (D_KL(P || Q)):")
Divergence of a distribution from itself should be 0
kl_a_a = tools.calculate_kl_divergence(dist_a, dist_a) print(f" - KL(A || A): {kl_a_a:.4f} (should be 0)")
Divergence of A from B (B is a good approximation of A)
kl_a_b = tools.calculate_kl_divergence(dist_a, dist_b) print(f" - KL(A || B): {kl_a_b:.4f} (should be small)")
Divergence of A from C (C is a bad approximation of A)
kl_a_c = tools.calculate_kl_divergence(dist_a, dist_c) print(f" - KL(A || C): {kl_a_c:.4f} (should be large)")
Note that KL divergence is asymmetric
kl_c_a = tools.calculate_kl_divergence(dist_c, dist_a) print(f" - KL(C || A): {kl_c_a:.4f} (note: not equal to KL(A || C))")
Source code in src/ds_tool.py
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 |
|
category_stats(df, col_name)
Calculate and print categorical statistics for unique values analysis.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
Input DataFrame |
required |
col_name
|
str
|
Column name for statistics calculation |
required |
Usage
tools = DSTools() tools.category_stats(df, 'category_column')
Source code in src/ds_tool.py
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 |
|
chatterjee_correlation(x, y, standard_flag=True)
staticmethod
Calculates Chatterjee's rank correlation coefficient (Xi).
This coefficient is a non-parametric measure of dependence between two variables. It is asymmetric and ranges from 0 to 1, where a value close to 1 indicates that y is a function of x. It can capture non-linear relationships.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Union[ndarray, Series, List[float]]
|
Array-like, the first variable (independent). |
required |
y
|
Union[ndarray, Series, List[float]]
|
Array-like, the second variable (dependent). |
required |
standard_flag
|
bool
|
bool flag which define type of calculation |
True
|
Returns:
Type | Description |
---|---|
float
|
The Chatterjee's correlation coefficient, a float between 0 and 1. |
Raises:
Type | Description |
---|---|
ValueError
|
If the input arrays do not have the same length. |
Usage
x = np.linspace(0, 10, 100) y_linear = 2 * x + 1 y_nonlinear = np.sin(x) tools = DSTools() print(f"Linear correlation: {tools.chatterjee_correlation(x, y_linear):.4f}") print(f"Non-linear correlation: {tools.chatterjee_correlation(x, y_nonlinear):.4f}")
Source code in src/ds_tool.py
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 |
|
check_NINF(data)
Check DataFrame or array for NaN and infinite values.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
Union[DataFrame, ndarray]
|
Input data to check |
required |
Usage
tools = DSTools() tools.check_NINF(data)
Source code in src/ds_tool.py
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 |
|
compute_metrics(y_true, y_predict, y_predict_proba, config=None)
Calculate main pre-selected classification metrics.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_true
|
ndarray
|
True labels |
required |
y_predict
|
ndarray
|
Predicted labels |
required |
y_predict_proba
|
ndarray
|
Predicted probabilities |
required |
config
|
Optional[MetricsConfig]
|
Configuration for metrics computation |
None
|
Returns:
Type | Description |
---|---|
DataFrame
|
DataFrame with calculated metrics |
Usage
from ds_tool import DSTools, MetricsConfig tools = DSTools() metrics = tools.compute_metrics(y_test, y_pred, y_pred_proba)
Source code in src/ds_tool.py
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 |
|
corr_matrix(df, config=None)
Calculate and visualize correlation matrix.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
Input DataFrame with numerical columns |
required |
config
|
Optional[CorrelationConfig]
|
Configuration for correlation matrix visualization |
None
|
Usage
from ds_tool import DSTools, CorrelationConfig tools = DSTools() tools.corr_matrix(df, CorrelationConfig(font_size=12))
Source code in src/ds_tool.py
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 |
|
describe_categorical(df)
Detailed description of categorical columns.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
Input DataFrame |
required |
Returns:
Type | Description |
---|---|
DataFrame
|
DataFrame with categorical statistics |
Usage
tools = DSTools() cat_stats = tools.describe_categorical(df)
Source code in src/ds_tool.py
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 |
|
describe_numeric(df)
Detailed description of numerical columns.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
Input DataFrame |
required |
Returns:
Type | Description |
---|---|
DataFrame
|
DataFrame with numerical statistics |
Usage
tools = DSTools() num_stats = tools.describe_numeric(df)
Source code in src/ds_tool.py
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 |
|
df_stats(df, return_format='dict', detailed=True)
Provide quick overview of DataFrame structure.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
Input DataFrame |
required |
return_format
|
str
|
Format of return ('dict' or 'dataframe') |
'dict'
|
detailed
|
bool
|
Include additional statistics |
True
|
Returns:
Type | Description |
---|---|
Union[dict, DataFrame]
|
dict or DataFrame with statistics |
Source code in src/ds_tool.py
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 |
|
evaluate_classification(true_labels, pred_probs, threshold=0.5, figsize=(16, 7))
staticmethod
Calculates, prints, and visualizes metrics for a binary classification model.
This "all-in-one" method provides a complete performance summary, including key scalar metrics, a classification report, a confusion matrix, and plots for ROC and Precision-Recall curves.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
true_labels
|
ndarray
|
Array of true binary labels (0 or 1). |
required |
pred_probs
|
ndarray
|
Array of predicted probabilities for the positive class. |
required |
threshold
|
float
|
The cutoff to convert probabilities into binary predictions. |
0.5
|
figsize
|
Tuple[int, int]
|
The size of the figure for the plots. |
(16, 7)
|
Returns:
Type | Description |
---|---|
Dict[str, Any]
|
A dictionary containing the calculated metrics for programmatic use. |
Source code in src/ds_tool.py
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 |
|
function_list()
Parses the list of available tools (the 'Agenda') from the class docstring as a formatted table (Pandas DataFrame).
pd.DataFrame: A DataFrame with 'Function Name' and 'Description' columns. Returns an empty DataFrame if the 'Agenda' section is not found.
Usage
pd.set_option('display.max_colwidth', 200) tools = DSTools() tools.function_list()
Source code in src/ds_tool.py
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
|
generate_alphanum_codes(n, length=8)
staticmethod
Generates an array of random alphanumeric codes.
This method is optimized for performance by using NumPy vectorized operations.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n
|
int
|
The number of codes to generate. |
required |
length
|
int
|
The length of each code. |
8
|
Returns:
Type | Description |
---|---|
ndarray
|
A NumPy array of strings, where each string is a random code. |
Usage
tools = DSTools() codes = tools.generate_alphanum_codes(5, length=10) print(f"Generated codes:\n{codes}")
Source code in src/ds_tool.py
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 |
|
generate_distribution(config)
Generates a distribution matching the provided statistical metrics.
This function creates a distribution by generating a base dataset with a shape defined by kurtosis, adds outliers, and then iteratively scales and shifts the data to match the target mean and standard deviation within a specified accuracy threshold.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
config
|
DistributionConfig
|
A Pydantic model instance containing all configuration parameters. |
required |
Returns:
Type | Description |
---|---|
ndarray
|
A NumPy array of numerical values with the specified properties. |
Usage
tools = DSTools() config = DistributionConfig(
... mean=100, median=95, std=15, min_val=50, max_val=200,
... skewness=0.5, kurtosis=3.5, n=1000
... )
data = tools.generate_distribution(config)
print(f'Generated Mean: {np.mean(data):.2f}, Std: {np.std(data):.2f}')
Source code in src/ds_tool.py
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 |
|
generate_distribution_from_metrics(n, metrics, int_flag=True, output_as='numpy', max_iterations=100)
Generates a synthetic distribution matching given statistical metrics.
This function uses an iterative approach to create a distribution that approximates the properties specified in the DistributionConfig.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n
|
int
|
Number of values to generate. |
required |
metrics
|
Union[DistributionConfig, Dict[str, float]]
|
A Pydantic |
required |
int_flag
|
bool
|
If True, returns integer values; otherwise, floats. |
True
|
output_as
|
Literal['numpy', 'pandas', 'polars']
|
The desired output format ('numpy', 'pandas', or 'polars'). |
'numpy'
|
max_iterations
|
int
|
int value is a number of iterations for tries. |
100
|
Returns:
Type | Description |
---|---|
Union[ndarray, Series, Series]
|
An array or Series of generated values. |
Usage
tools = DSTools() try: metrics_dict = DistributionConfig( mean=1042, median=330, std=1500, min_val=1, max_val=120000, skewness=13.2, kurtosis=245, n=10000, accuracy_threshold=0.05, outlier_ratio=0.05 )
# 2. Generate the data using the metrics object
generated_data = tools.generate_distribution_from_metrics(
n=1000,
metrics=metrics_dict,
int_flag=True,
output_as='numpy'
)
# 3. Analyze the result
print("--- Target vs. Actual Statistics ---")
print(f"Target Mean: {metrics.mean}, Actual Mean: {np.mean(generated_data):.2f}")
print(f"Target Median: {metrics.median}, Actual Median: {np.median(generated_data):.2f}")
print(f"Target Std: {metrics.std}, Actual Std: {np.std(generated_data):.2f}")
print(f"Target Skew: {metrics.skewness}, Actual Skew: {stats.skew(generated_data):.2f}")
print(f"Target Kurtosis: {metrics.kurtosis}, Actual Kurtosis: {stats.kurtosis(generated_data, fisher=False):.2f}")
print(f"Target Min: {metrics.min_val}, Actual Min: {np.min(generated_data):.2f}")
print(f"Target Max: {metrics.max_val}, Actual Max: {np.max(generated_data):.2f}")
except ValueError as e: print(f"Error during configuration or generation: {e}")
Source code in src/ds_tool.py
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 |
|
grubbs_test(x, alpha=0.05)
staticmethod
Performs Grubbs' test to identify a single outlier in a dataset.
This test assumes the data comes from a normally distributed population and is designed to detect one outlier at a time.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Union[ndarray, Series]
|
A 1D NumPy array or Pandas Series of numerical data. |
required |
alpha
|
float
|
The significance level for the test (default: 0.05). |
0.05
|
Returns:
Type | Description |
---|---|
GrubbsTestResult
|
A Pydantic model (GrubbsTestResult) containing the test results, |
GrubbsTestResult
|
including a boolean flag for outlier detection and the outlier's value |
GrubbsTestResult
|
and index if found. |
Raises:
Type | Description |
---|---|
ValueError
|
If the input array has fewer than 3 elements. |
Usage
tools = DSTools()
Test 1: Data with an outlier
print("\nTesting on data WITH an outlier:") result1 = tools.grubbs_test(data_with_outlier) print(f" Calculated G-statistic: {result1.g_calculated:.4f}") print(f" Critical G-value: {result1.g_critical:.4f}") if result1.is_outlier: print(f"Outlier detected: The value is {result1.outlier_value:.2f} at index {result1.outlier_index}.") else: print("No outlier detected.")
Test 2: Data without an outlier
print("\nTesting on data WITHOUT an outlier:") result2 = tools.grubbs_test(data_without_outlier) print(f" Calculated G-statistic: {result2.g_calculated:.4f}") print(f" Critical G-value: {result2.g_critical:.4f}") if result2.is_outlier: print(f"Outlier detected, but shouldn't have been.") else: print("Correctly determined that there are no outliers.")
Source code in src/ds_tool.py
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 |
|
labeling(df, col_name, order_flag=True)
Encode categorical variables with optional ordering.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
Input DataFrame |
required |
col_name
|
str
|
Column name for transformation |
required |
order_flag
|
bool
|
Whether to apply ordering based on frequency |
True
|
Returns:
Type | Description |
---|---|
DataFrame
|
DataFrame with encoded column |
Usage
tools = DSTools() df = tools.labeling(df, 'category_column', True)
Source code in src/ds_tool.py
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 |
|
min_max_scale(df, columns=None, const_val_fill=0.0)
staticmethod
Scales specified columns of a DataFrame to the range [0, 1].
This method applies Min-Max scaling. If a column contains identical
values, it will be filled with const_val_fill
. The original
DataFrame is not modified.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
Union[DataFrame, DataFrame]
|
The input DataFrame (Pandas or Polars). |
required |
columns
|
Optional[List[str]]
|
A list of column names to scale. If None (default), all numerical columns will be scaled. |
None
|
const_val_fill
|
float
|
The value to use for columns where all values are identical (to avoid division by zero). |
0.0
|
Returns:
Type | Description |
---|---|
Union[DataFrame, DataFrame]
|
A new DataFrame with the specified columns scaled. |
Usage
tools = DSTools() pd_scaled = tools.min_max_scale(pd_data, columns=['a', 'c']) print("\nPandas DataFrame with scaled columns 'a' and 'c':") print(pd_scaled)
pl_scaled = tools.min_max_scale(pl_data) # Scale all numeric columns print("\nPolars DataFrame with all numeric columns scaled:") print(pl_scaled)
pl_scaled_half = tools.min_max_scale(pl_data, const_val_fill=0.5) print("\nPolars DataFrame with constant columns filled with 0.5:") print(pl_scaled_half)
Source code in src/ds_tool.py
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 |
|
plot_confusion_matrix(y_true, y_pred, class_labels=None, figsize=(8, 8), title='Confusion Matrix', cmap='Blues')
staticmethod
Plots a clear and readable confusion matrix using seaborn.
This method visualizes the performance of a classification model by showing the number of correct and incorrect predictions for each class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_true
|
Union[ndarray, Series]
|
Array-like of true labels. |
required |
y_pred
|
Union[ndarray, Series]
|
Array-like of predicted labels. |
required |
class_labels
|
Optional[List[str]]
|
Optional list of strings to use as labels for the axes. If None, integer labels will be used. |
None
|
figsize
|
Tuple[int, int]
|
Tuple specifying the figure size. |
(8, 8)
|
title
|
str
|
The title for the plot. |
'Confusion Matrix'
|
cmap
|
str
|
The colormap to use for the heatmap. |
'Blues'
|
Usage: tools = DSTools()
tools.plot_confusion_matrix(
y_true_binary,
y_pred_binary,
class_labels=['Negative (0)', 'Positive (1)'],
title='Binary Confusion Matrix'
)
tools.plot_confusion_matrix(
y_true_multi,
y_pred_multi,
class_labels=['Cat', 'Dog', 'Bird'],
title='Multi-Class Confusion Matrix'
)
Source code in src/ds_tool.py
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 |
|
read_dataframes_from_zip(zip_filename, format='parquet', backend='polars')
staticmethod
Reads one or more DataFrames from a ZIP archive.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
zip_filename
|
str
|
The path to the ZIP archive. |
required |
format
|
str
|
The format of the files inside the ZIP ('parquet', 'csv'). |
'parquet'
|
backend
|
str
|
The library to use for reading ('polars' or 'pandas'). |
'polars'
|
Returns:
Type | Description |
---|---|
Dict[str, Union[DataFrame, DataFrame]]
|
A dictionary where keys are the filenames (without extension) and |
Dict[str, Union[DataFrame, DataFrame]]
|
values are the loaded DataFrames. |
Source code in src/ds_tool.py
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 |
|
remove_outliers_iqr(df, column_name, config=None)
Remove outliers using IQR (Inter Quartile Range) method.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
Input DataFrame |
required |
column_name
|
str
|
Target column name |
required |
config
|
Optional[OutlierConfig]
|
Configuration for outlier removal |
None
|
Returns:
Type | Description |
---|---|
Union[DataFrame, Tuple[DataFrame, float, float]]
|
Modified DataFrame, optionally with outlier percentages |
Usage
from ds_tool import DSTools, OutlierConfig tools = DSTools() config_custom = OutlierConfig(sigma=1.0, percentage=False) df_clean = tools.remove_outliers_iqr(df, 'target_column', config=config_custom) df_replaced, p_upper, p_lower = tools.remove_outliers_iqr(df, 'target_column')
Source code in src/ds_tool.py
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 |
|
save_dataframes_to_zip(dataframes, zip_filename, format='parquet', save_index=False)
staticmethod
Saves one or more Pandas or Polars DataFrames into a single ZIP archive.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataframes
|
Dict[str, Union[DataFrame, DataFrame]]
|
A dictionary where keys are the desired filenames (without extension) and values are the Pandas or Polars DataFrames. |
required |
zip_filename
|
str
|
The path for the output ZIP archive. |
required |
format
|
str
|
The format to save the data in ('parquet', 'csv'). |
'parquet'
|
save_index
|
bool
|
For Pandas DataFrames, whether to save the index. (Ignored for Polars). |
False
|
Usage
tools = DSTools() dfs_to_save = { 'pandas_data': pd_df, 'polars_data': pl_df } zip_path = 'mixed_data_archive.zip' print("\n--- Saving mixed DataFrames ---") tools.save_dataframes_to_zip(dfs_to_save, zip_path, format='parquet', save_index=True)
print("\n--- Reading back with Polars backend ---") loaded_with_polars = tools.read_dataframes_from_zip(zip_path, format='parquet', backend='polars') print("DataFrame 'pandas_data' loaded by Polars:") print(loaded_with_polars['pandas_data']) # The index will be lost because Polars does not have it.
print("\n--- Reading back with Pandas backend ---") loaded_with_pandas = tools.read_dataframes_from_zip(zip_path, format='parquet', backend='pandas') print("DataFrame 'pandas_data' loaded by Pandas:") print(loaded_with_pandas['pandas_data']) # The index will be restored
if os.path.exists(zip_path): os.remove(zip_path)
Source code in src/ds_tool.py
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 |
|
sparse_calc(df)
Calculate sparsity level as coefficient.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
Input DataFrame |
required |
Returns:
Type | Description |
---|---|
float
|
Sparsity coefficient as percentage |
Usage
tools = DSTools() sparsity = tools.sparse_calc(df)
Source code in src/ds_tool.py
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 |
|
stat_normal_testing(check_object, describe_flag=False)
Perform D'Agostino's K² test for normality testing.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
check_object
|
Union[DataFrame, Series]
|
Input data (DataFrame or Series) |
required |
describe_flag
|
bool
|
Whether to show descriptive statistics |
False
|
Usage
tools = DSTools()
tools.stat_normal_testing(data, describe_flag=True)
Source code in src/ds_tool.py
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 |
|
test_stationarity(check_object, print_results_flag=True, len_window=30)
Perform Dickey-Fuller test for stationarity testing.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
check_object
|
Series
|
Input time series data |
required |
print_results_flag
|
bool
|
Whether to print detailed results |
True
|
len_window
|
int
|
length of a window, default is 30 |
30
|
Usage
tools = DSTools() tools.test_stationarity(time_series, print_results_flag=True)
Source code in src/ds_tool.py
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 |
|
trials_res_df(study_trials, metric)
Aggregate Optuna optimization trials as DataFrame.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
study_trials
|
List[Any]
|
List of Optuna trials (study.trials) |
required |
metric
|
str
|
Metric name for sorting (e.g., 'MCC', 'F1') |
required |
Returns:
Type | Description |
---|---|
DataFrame
|
DataFrame with aggregated trial results |
Usage
tools = DSTools() results = tools.trials_res_df(study.trials, 'MCC')
Source code in src/ds_tool.py
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 |
|
validate_moments(std, skewness, kurtosis)
staticmethod
Validate that statistical moments are physically possible. A key property is that kurtosis must be greater than or equal to the square of skewness minus 2.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
std
|
float
|
Standard deviation |
required |
skewness
|
float
|
Skewness value |
required |
kurtosis
|
float
|
Kurtosis value |
required |
Returns:
Type | Description |
---|---|
bool
|
True if moments are valid, False otherwise |
Usage
tools = DSTools() is_valid = tools.validate_moments(1.0, 0.5, 3.0)
Source code in src/ds_tool.py
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 |
|