Skip to content

API Reference

This page contains the complete API documentation for all modules and classes in the ds_tool library.

ds_tool.DSTools

Data Science Tools for research and analysis.

Agenda:

function_list

Prints the list of available tools

compute_metrics

Calculate main pre-selected classification metrics

corr_matrix

Calculate and visualize correlation matrix

category_stats

Calculate and print categorical statistics (unique values analysis)

sparse_calc

Calculate sparsity level as coefficient

trials_res_df

Aggregate Optuna optimization trials as DataFrame

labeling

Encode categorical variables with optional ordering

remove_outliers_iqr

Remove outliers using IQR method

stat_normal_testing

Perform D'Agostino's K² test for normality

test_stationarity

Perform Dickey-Fuller test for stationarity

check_NINF

Check for NaN and infinite values in DataFrame

df_stats

Quick overview of DataFrame structure

describe_categorical

Detailed description of categorical columns

describe_numeric

Detailed description of numerical columns

generate_distribution

Generate synthetic numerical distribution with specific statistical properties

validate_moments

Helper method to check if the requested statistical moments are physically possible

evaluate_classification

Calculates, prints, and visualizes metrics for a binary classification model

grubbs_test

Performs Grubbs' test to identify a single outlier in a dataset

plot_confusion_matrix

Plots a clear and readable confusion matrix using seaborn

add_missing_value_features

Adds features based on the count of missing values per row

chatterjee_correlation

Calculates Chatterjee's rank correlation coefficient (Xi) between two variables.

calculate_entropy

Calculates the Shannon entropy of a probability distribution.

calculate_kl_divergence

Calculates the Kullback-Leibler (KL) divergence between two probability distributions.

min_max_scale

Scales specified columns of a DataFrame to the range [0, 1].

save_dataframes_to_zip

Saves one or more Pandas/Polars DataFrames into a single ZIP archive.

read_dataframes_from_zip

Reads one or more Pandas/Polars DataFrames from a ZIP archive.

generate_alphanum_codes

Generates an array of random alphanumeric codes of a specified length.

generate_distribution_from_metrics

Generates a synthetic distribution of numbers matching given statistical metrics.

Source code in src/ds_tool.py
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
class DSTools:
    """Data Science Tools for research and analysis.

    Agenda:
    -------

    function_list:
        Prints the list of available tools

    compute_metrics:
        Calculate main pre-selected classification metrics

    corr_matrix:
        Calculate and visualize correlation matrix

    category_stats:
        Calculate and print categorical statistics (unique values analysis)

    sparse_calc:
        Calculate sparsity level as coefficient

    trials_res_df:
        Aggregate Optuna optimization trials as DataFrame

    labeling:
        Encode categorical variables with optional ordering

    remove_outliers_iqr:
        Remove outliers using IQR method

    stat_normal_testing:
        Perform D'Agostino's K² test for normality

    test_stationarity:
        Perform Dickey-Fuller test for stationarity

    check_NINF:
        Check for NaN and infinite values in DataFrame

    df_stats:
        Quick overview of DataFrame structure

    describe_categorical:
        Detailed description of categorical columns

    describe_numeric:
        Detailed description of numerical columns

    generate_distribution:
        Generate synthetic numerical distribution with specific statistical properties

    validate_moments:
        Helper method to check if the requested statistical moments are physically possible

    evaluate_classification:
        Calculates, prints, and visualizes metrics for a binary classification model

    grubbs_test:
        Performs Grubbs' test to identify a single outlier in a dataset

    plot_confusion_matrix:
        Plots a clear and readable confusion matrix using seaborn

    add_missing_value_features:
        Adds features based on the count of missing values per row

    chatterjee_correlation:
        Calculates Chatterjee's rank correlation coefficient (Xi) between two variables.

    calculate_entropy:
        Calculates the Shannon entropy of a probability distribution.

    calculate_kl_divergence:
        Calculates the Kullback-Leibler (KL) divergence between two probability distributions.

    min_max_scale:
        Scales specified columns of a DataFrame to the range [0, 1].

    save_dataframes_to_zip:
        Saves one or more Pandas/Polars DataFrames into a single ZIP archive.

    read_dataframes_from_zip:
        Reads one or more Pandas/Polars DataFrames from a ZIP archive.

    generate_alphanum_codes:
        Generates an array of random alphanumeric codes of a specified length.

    generate_distribution_from_metrics:
        Generates a synthetic distribution of numbers matching given statistical metrics.

    """

    def __init__(self):
        """Initialize the DSTools class with default configurations."""
        plt.rcParams["figure.figsize"] = (15, 9)
        pd.options.display.float_format = "{:.2f}".format
        np.set_printoptions(suppress=True, precision=4)

        # Set random seeds for reproducibility
        random_seed = 42
        np.random.seed(random_seed)
        random.seed(random_seed)

        # Theme configuration
        self.plotly_theme = "plotly_dark"

    def function_list(self) -> pd.DataFrame:
        """Parses the list of available tools (the 'Agenda') from the class
        docstring as a formatted table (Pandas DataFrame).

        Returns:
        pd.DataFrame: A DataFrame with 'Function Name' and 'Description'
                      columns. Returns an empty DataFrame if the 'Agenda'
                      section is not found.

        Usage:
            pd.set_option('display.max_colwidth', 200)
            tools = DSTools()
            tools.function_list()

        """
        # 1. Get the main docstring of the class
        doc = self.__class__.__doc__

        if not doc:
            print("Warning: No documentation found for this class.")
            return pd.DataFrame(columns=["Function Name", "Description"])

        # 2. Find the 'Agenda' section
        match = re.search(r"Agenda:\s*---+\s*(.*)", doc, re.S)

        if not match:
            print("Warning: No 'Agenda' section found in the class documentation.")
            return pd.DataFrame(columns=["Function Name", "Description"])

        # 3. Parse the content with the robust regex method
        agenda_content = match.group(1).strip()
        lines = agenda_content.split("\n")

        tools_data = []
        current_entry = None
        entry_pattern = re.compile(r"^\s*([a-zA-Z0-9_]+):\s*(.*)")

        for line in lines:
            m = entry_pattern.match(line)
            if m:
                if current_entry:
                    current_entry["Description"] = " ".join(
                        current_entry["Description"]
                    ).strip()
                    tools_data.append(current_entry)

                func_name = m.group(1)
                desc_part = m.group(2).strip()
                current_entry = {
                    "Function Name": func_name,
                    "Description": [desc_part] if desc_part else [],
                }
            elif current_entry and line.strip():
                current_entry["Description"].append(line.strip())

        if current_entry:
            current_entry["Description"] = " ".join(
                current_entry["Description"]
            ).strip()
            tools_data.append(current_entry)

        # 4. Create and return the DataFrame
        if not tools_data:
            print("Warning: No tools found in the Agenda.")
            return pd.DataFrame(columns=["Function Name", "Description"])
        out_df = pd.DataFrame(tools_data).iloc[1:]

        with pd.option_context(
            "display.max_colwidth",
            200,  # Макс. ширина колонки (в символах)
            "display.width",
            350,  # Общая ширина вывода
            "display.colheader_justify",
            "center",  # Выравнивание заголовков по левому краю
        ):
            return out_df

    def compute_metrics(
        self,
        y_true: np.ndarray,
        y_predict: np.ndarray,
        y_predict_proba: np.ndarray,
        config: Optional[MetricsConfig] = None,
    ) -> pd.DataFrame:
        """Calculate main pre-selected classification metrics.

        Args:
            y_true: True labels
            y_predict: Predicted labels
            y_predict_proba: Predicted probabilities
            config: Configuration for metrics computation

        Returns:
            DataFrame with calculated metrics

        Usage:
            from ds_tool import DSTools, MetricsConfig
            tools = DSTools()
            metrics = tools.compute_metrics(y_test, y_pred, y_pred_proba)

        """
        if config is None:
            config = MetricsConfig()

        metrics_dict = {}

        # Average Precision Score
        aps = average_precision_score(y_true, y_predict_proba) * 100
        metrics_dict["Average_precision, %"] = round(aps, 2)

        if config.print_values:
            print(f"Average_precision = {aps:.3f} %")

        # Balanced Accuracy Score
        bas = balanced_accuracy_score(y_true, y_predict) * 100
        metrics_dict["Balanced_accuracy, %"] = round(bas, 2)

        if config.print_values:
            print(f"Balanced_accuracy = {bas:.3f} %")

        # Likelihood Ratios
        clr = class_likelihood_ratios(y_true, y_predict)
        metrics_dict["Likelihood_ratios+"] = clr[0]
        metrics_dict["Likelihood_ratios-"] = clr[1]

        if config.print_values:
            print(
                f"Likelihood_ratios+ = {clr[0]:.3f}\nLikelihood_ratios- = {clr[1]:.3f}"
            )

        # Cohen's Kappa Score
        cks = cohen_kappa_score(y_true, y_predict) * 100
        metrics_dict["Kappa_score, %"] = round(cks, 2)

        if config.print_values:
            print(f"Kappa_score = {cks:.3f} %")

        # Hamming Loss
        hl = hamming_loss(y_true, y_predict) * 100
        metrics_dict["Incor_pred_labels (hamming_loss), %"] = round(hl, 2)

        if config.print_values:
            print(f"Incor_pred_labels (hamming_loss) = {hl:.3f} %")

        # Jaccard Score
        hs = jaccard_score(y_true, y_predict) * 100
        metrics_dict["Jaccard_similarity, %"] = round(hs, 2)

        if config.print_values:
            print(f"Jaccard_similarity = {hs:.3f} %")

        # Log Loss
        ls = log_loss(y_true, y_predict_proba)
        metrics_dict["Cross_entropy_loss"] = ls

        if config.print_values:
            print(f"Cross_entropy_loss = {ls:.3f}")

        # Correlation Coefficient
        cc = np.corrcoef(y_true, y_predict)[0][1] * 100
        metrics_dict["Coef_correlation, %"] = round(cc, 2)

        if config.print_values:
            print(f"Coef_correlation = {cc:.3f} %")

        # Error visualization
        if config.error_vis:
            fpr, fnr, thresholds = det_curve(y_true, y_predict_proba)
            plt.plot(thresholds, fpr, label="False Positive Rate (FPR)")
            plt.plot(thresholds, fnr, label="False Negative Rate (FNR)")
            plt.title("Error Rates vs Threshold Levels")
            plt.xlabel("Threshold Level")
            plt.ylabel("Error Rate")
            plt.legend()
            plt.grid(True)
            plt.show()

        return pd.DataFrame([metrics_dict])

    def corr_matrix(
        self, df: pd.DataFrame, config: Optional[CorrelationConfig] = None
    ) -> None:
        """Calculate and visualize correlation matrix.

        Args:
            df: Input DataFrame with numerical columns
            config: Configuration for correlation matrix visualization

        Usage:
             from ds_tool import DSTools, CorrelationConfig
             tools = DSTools()
             tools.corr_matrix(df, CorrelationConfig(font_size=12))

        """
        if config is None:
            config = CorrelationConfig()

        # Calculate correlation matrix
        corr = df.corr(method=config.build_method)
        mask = np.triu(np.ones_like(corr, dtype=bool))

        # Determine figure size based on number of columns
        n_cols = len(df.columns)

        if n_cols < 5:
            fig_size = (8, 8)
        elif n_cols < 9:
            fig_size = (10, 10)
        elif n_cols < 15:
            fig_size = (22, 22)
        else:
            fig_size = config.image_size

        fig, ax = plt.subplots(figsize=fig_size)

        # Create heatmap
        ax = sns.heatmap(
            corr,
            annot=True,
            annot_kws={"size": config.font_size},
            fmt=".3f",
            center=0,
            linewidths=1.0,
            linecolor="black",
            square=True,
            cmap=sns.diverging_palette(20, 220, n=100),
            mask=mask,
        )

        # Customize x-axis
        ax.tick_params(
            axis="x",
            which="major",
            direction="inout",
            length=20,
            width=4,
            color="m",
            pad=10,
            labelsize=16,
            labelcolor="b",
            bottom=True,
            top=True,
            labelbottom=True,
            labeltop=True,
            labelrotation=85,
        )

        # Customize y-axis
        ax.tick_params(
            axis="y",
            which="major",
            direction="inout",
            length=20,
            width=4,
            color="m",
            pad=10,
            labelsize=16,
            labelcolor="r",
            left=True,
            right=False,
            labelleft=True,
            labelright=False,
            labelrotation=0,
        )

        ax.set_yticklabels(
            ax.get_yticklabels(), rotation=0, fontsize=16, verticalalignment="center"
        )

        plt.title(
            f"Correlation ({config.build_method}) matrix for selected features",
            fontsize=20,
        )
        plt.tight_layout()
        plt.show()

    def category_stats(self, df: pd.DataFrame, col_name: str) -> None:
        """Calculate and print categorical statistics for unique values analysis.

        Args:
            df: Input DataFrame
            col_name: Column name for statistics calculation

        Usage:
             tools = DSTools()
             tools.category_stats(df, 'category_column')

        """
        if col_name not in df.columns:
            raise ValueError(f"Column {col_name} not found in DataFrame")

        value_counts = df[col_name].value_counts()
        percentage = df[col_name].value_counts(normalize=True) * 100

        aggr_stats = pd.DataFrame(
            {
                "uniq_names": value_counts.index.tolist(),
                "amount_values": value_counts.values.tolist(),
                "percentage": percentage.values.tolist(),
            }
        )

        aggr_stats.columns = pd.MultiIndex.from_product(
            [[col_name], aggr_stats.columns]
        )
        print(aggr_stats)

    def sparse_calc(self, df: pd.DataFrame) -> float:
        """Calculate sparsity level as coefficient.

        Args:
            df: Input DataFrame

        Returns:
            Sparsity coefficient as percentage

        Usage:
             tools = DSTools()
             sparsity = tools.sparse_calc(df)

        """
        sparse_coef = round(df.apply(pd.arrays.SparseArray).sparse.density * 100, 2)
        print(f"Level of sparsity = {sparse_coef} %")

        return sparse_coef

    def trials_res_df(self, study_trials: List[Any], metric: str) -> pd.DataFrame:
        """Aggregate Optuna optimization trials as DataFrame.

        Args:
            study_trials: List of Optuna trials (study.trials)
            metric: Metric name for sorting (e.g., 'MCC', 'F1')

        Returns:
            DataFrame with aggregated trial results

        Usage:
             tools = DSTools()
             results = tools.trials_res_df(study.trials, 'MCC')

        """
        df_results = pd.DataFrame()

        for trial in study_trials:
            if trial.value is None:
                continue

            trial_data = pd.DataFrame.from_dict(trial.params, orient="index").T
            trial_data.insert(0, metric, trial.value)

            if trial.datetime_complete and trial.datetime_start:
                duration = (
                    trial.datetime_complete - trial.datetime_start
                ).total_seconds()
                trial_data["Duration"] = duration

            df_results = pd.concat([df_results, trial_data], ignore_index=True)

        df_results = df_results.sort_values(metric, ascending=False)

        for col in df_results.columns:
            if col not in [metric, "Duration"]:
                df_results[col] = pd.to_numeric(df_results[col], errors="coerce")

        return df_results

    def labeling(
        self, df: pd.DataFrame, col_name: str, order_flag: bool = True
    ) -> pd.DataFrame:
        """Encode categorical variables with optional ordering.

        Args:
            df: Input DataFrame
            col_name: Column name for transformation
            order_flag: Whether to apply ordering based on frequency

        Returns:
            DataFrame with encoded column

        Usage:
             tools = DSTools()
             df = tools.labeling(df, 'category_column', True)

        """
        if col_name not in df.columns:
            raise ValueError(f"Column {col_name} not found in DataFrame")

        df_copy = df.copy()
        unique_values = df_copy[col_name].unique()
        value_index = dict(zip(unique_values, range(len(unique_values))))
        print(f"Set of unique indexes for <{col_name}>:\n{value_index}")

        if order_flag:
            counts = (
                df_copy[col_name]
                .value_counts(normalize=True)
                .sort_values()
                .index.tolist()
            )
            counts_dict = {val: i for i, val in enumerate(counts)}
            encoder = OrdinalEncoder(categories=[list(counts_dict.keys())], dtype=int)
        else:
            encoder = OrdinalEncoder(dtype=int)

        df_copy[col_name] = encoder.fit_transform(df_copy[[col_name]])
        return df_copy

    def remove_outliers_iqr(
        self, df: pd.DataFrame, column_name: str, config: Optional[OutlierConfig] = None
    ) -> Union[pd.DataFrame, Tuple[pd.DataFrame, float, float]]:
        """Remove outliers using IQR (Inter Quartile Range) method.

        Args:
            df: Input DataFrame
            column_name: Target column name
            config: Configuration for outlier removal

        Returns:
            Modified DataFrame, optionally with outlier percentages

        Usage:
             from ds_tool import DSTools, OutlierConfig
             tools = DSTools()
             config_custom = OutlierConfig(sigma=1.0, percentage=False)
             df_clean = tools.remove_outliers_iqr(df, 'target_column', config=config_custom)
             df_replaced, p_upper, p_lower = tools.remove_outliers_iqr(df, 'target_column')

        """
        if config is None:
            config = OutlierConfig()

        if column_name not in df.columns:
            raise ValueError(f"Column {column_name} not found in DataFrame")

        df_copy = df.copy()
        target = df_copy[column_name]

        q1 = target.quantile(0.25)
        q3 = target.quantile(0.75)
        iqr = q3 - q1
        iqr_lower = q1 - config.sigma * iqr
        iqr_upper = q3 + config.sigma * iqr

        outliers_upper = target > iqr_upper
        outliers_lower = target < iqr_lower

        if config.change_remove:
            df_copy.loc[outliers_upper, column_name] = iqr_upper
            df_copy.loc[outliers_lower, column_name] = iqr_lower
        else:
            df_copy = df_copy[~(outliers_upper | outliers_lower)]

        if config.percentage:
            percent_upper = round(outliers_upper.sum() / len(df) * 100, 2)
            percent_lower = round(outliers_lower.sum() / len(df) * 100, 2)
            return df_copy, percent_upper, percent_lower

        return df_copy

    def stat_normal_testing(
        self, check_object: Union[pd.DataFrame, pd.Series], describe_flag: bool = False
    ) -> None:
        """Perform D'Agostino's K² test for normality testing.

        Args:
            check_object: Input data (DataFrame or Series)
            describe_flag: Whether to show descriptive statistics

        Usage:
             tools = DSTools()

             tools.stat_normal_testing(data, describe_flag=True)

        """
        if isinstance(check_object, pd.DataFrame) and len(check_object.columns) == 1:
            check_object = check_object.iloc[:, 0]

        # Perform normality test
        stat, p_value = stats.normaltest(check_object)
        print(f"Statistics = {stat:.3f}, p = {p_value:.3f}")

        alpha = 0.05
        if p_value > alpha:
            print("Data looks Gaussian (fail to reject H0). Data is normal")
        else:
            print("Data does not look Gaussian (reject H0). Data is not normal")

        # Calculate kurtosis and skewness
        kurtosis_val = stats.kurtosis(check_object)
        skewness_val = stats.skew(check_object)

        print(f"\nKurtosis: {kurtosis_val:.3f}")

        if abs(kurtosis_val) < 0.1:
            print("Distribution has normal tail weight")
        elif kurtosis_val > 0:
            print("Distribution has heavier tails than normal")
        else:  # kurtosis_val < -0.1
            print("Distribution has lighter tails than normal")

        print(f"\nSkewness: {skewness_val:.3f}")
        if -0.5 <= skewness_val <= 0.5:
            print("Data are fairly symmetrical")
        elif skewness_val < -1 or skewness_val > 1:
            print("Data are highly skewed")
        else:
            print("Data are moderately skewed")

        # Visualization
        sns.displot(check_object, bins=30)
        plt.title("Distribution of the data")
        plt.show()

        if describe_flag:
            print("\nDescriptive Statistics:")
            print(check_object.describe())

            fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 6))

            ax1.hist(check_object, bins=50, edgecolor="black")
            ax1.set_title("Histogram")
            ax1.set_xlabel("Values")
            ax1.set_ylabel("Frequency")

            stats.probplot(check_object, dist="norm", plot=ax2)
            ax2.set_title("Q-Q Plot")

            plt.tight_layout()
            plt.show()

    def test_stationarity(
        self,
        check_object: pd.Series,
        print_results_flag: bool = True,
        len_window: int = 30,
    ) -> None:
        """Perform Dickey-Fuller test for stationarity testing.

        Args:
            check_object: Input time series data
            print_results_flag: Whether to print detailed results
            len_window: length of a window, default is 30

        Usage:
             tools = DSTools()
             tools.test_stationarity(time_series, print_results_flag=True)

        """
        # Calculate rolling statistics
        rolling_mean = check_object.rolling(window=len_window).mean()
        rolling_std = check_object.rolling(window=len_window).std()

        # Plot rolling statistics
        fig, ax = plt.subplots(figsize=(12, 6))
        ax.plot(check_object, color="blue", label="Original", linewidth=2)
        ax.plot(rolling_mean, color="red", label="Rolling Mean", linewidth=2)
        ax.plot(rolling_std, color="black", label="Rolling Std", linewidth=2)

        ax.legend(loc="upper left")
        ax.set_title("Rolling Mean & Standard Deviation")
        ax.grid(True, alpha=0.3)
        plt.tight_layout()
        plt.show()
        plt.close(fig)

        # Perform Dickey-Fuller test
        adf_result = adfuller(check_object, autolag="AIC")
        adf_output = pd.Series(
            adf_result[0:4],
            index=[
                "Test Statistic",
                "p-value",
                "Lags Used",
                "Number of Observations Used",
            ],
        )

        for key, value in adf_result[4].items():
            adf_output[f"Critical Value ({key})"] = value

        if print_results_flag:
            print("Results of Dickey-Fuller Test:")
            print(adf_output)

        # Interpret results
        if adf_output["p-value"] <= 0.05:
            print("\nData does not have a unit root. Data is STATIONARY!")
        else:
            print("\nData has a unit root. Data is NON-STATIONARY!")

    def check_NINF(self, data: Union[pd.DataFrame, np.ndarray]) -> None:
        """Check DataFrame or array for NaN and infinite values.

        Args:
            data: Input data to check

        Usage:
             tools = DSTools()
             tools.check_NINF(data)

        """
        if isinstance(data, pd.DataFrame):
            has_nan = data.isnull().any().any()
            has_inf = np.isinf(data.select_dtypes(include=[np.number])).any().any()
        else:
            has_nan = np.isnan(data).any()
            has_inf = np.isinf(data).any()

        if not has_nan and not has_inf:
            print("Dataset has no NaN or infinite values")
        elif has_nan and not has_inf:
            print("Dataset has NaN values but no infinite values")
        elif not has_nan and has_inf:
            print("Dataset has infinite values but no NaN values")
        else:
            print("Dataset has both NaN and infinite values")

    def df_stats(
        self, df: pd.DataFrame, return_format: str = "dict", detailed: bool = True
    ) -> Union[dict, pd.DataFrame]:
        """Provide quick overview of DataFrame structure.

        Args:
            df: Input DataFrame
            return_format: Format of return ('dict' or 'dataframe')
            detailed: Include additional statistics

        Returns:
            dict or DataFrame with statistics

        """
        stats = {
            "columns": df.shape[1],
            "rows": df.shape[0],
            "missing_percent": np.round(df.isnull().sum().sum() / df.size * 100, 1),
            "memory_mb": np.round(df.memory_usage(deep=True).sum() / 10**6, 1),
        }

        if detailed:
            stats.update(
                {
                    "numeric_columns": df.select_dtypes(include=[np.number]).shape[1],
                    "categorical_columns": df.select_dtypes(
                        include=["object", "category"]
                    ).shape[1],
                    "datetime_columns": df.select_dtypes(include=["datetime"]).shape[1],
                    "duplicated_rows": df.duplicated().sum(),
                    "total_missing_values": df.isnull().sum().sum(),
                }
            )

        if return_format.lower() == "dataframe":
            return pd.DataFrame(list(stats.items()), columns=["metric", "value"])
        else:
            return stats

    def describe_categorical(self, df: pd.DataFrame) -> pd.DataFrame:
        """Detailed description of categorical columns.

        Args:
            df: Input DataFrame

        Returns:
            DataFrame with categorical statistics

        Usage:
             tools = DSTools()
             cat_stats = tools.describe_categorical(df)

        """
        # 1. Select columns with types 'object', 'category', 'string'
        categorical_cols = df.select_dtypes(
            include=["object", "category", "string"]
        ).columns.tolist()

        # 2. Find columns that ONLY consist of NaN (they can be of numeric type)
        all_nan_cols = df.columns[df.isnull().all()].tolist()

        # 3. Combine both lists and remove duplicates
        cols_to_process = sorted(set(categorical_cols + all_nan_cols))

        if not cols_to_process:
            return pd.DataFrame()

        # 4. Get basic descriptive statistics
        description = df[cols_to_process].describe(include="all").T

        # 5. Calculate the percentage of missing data
        missing_percent = (df[cols_to_process].isnull().sum() / len(df) * 100).round(1)

        # 6. Assemble the final DataFrame
        result_df = description
        result_df["missing (%)"] = missing_percent

        # 7. Order and clear the columns
        # Remove 'count', as it duplicates the information about missing data
        if "count" in result_df.columns:
            result_df = result_df.drop(columns="count")

        final_cols_order = ["missing (%)", "unique", "top", "freq"]

        # Leave only those columns from our ideal list that actually exist
        existing_cols = [col for col in final_cols_order if col in result_df.columns]

        return result_df[existing_cols]

    def describe_numeric(self, df: pd.DataFrame) -> pd.DataFrame:
        """Detailed description of numerical columns.

        Args:
            df: Input DataFrame

        Returns:
            DataFrame with numerical statistics

        Usage:
             tools = DSTools()
             num_stats = tools.describe_numeric(df)

        """
        numeric_cols = df.select_dtypes(include=[np.number]).columns
        if len(numeric_cols) == 0:
            return pd.DataFrame()

        numeric_df = df[numeric_cols]
        description = numeric_df.describe()

        result_data = {
            "sum": numeric_df.sum(),
            "missing (%)": np.round(numeric_df.isnull().sum() / len(df) * 100, 1),
            "median": numeric_df.median(),
            "skew": numeric_df.skew(),
            "kurtosis": numeric_df.kurtosis(),
        }

        # Add description statistics
        for stat in description.index:
            if stat != "count":
                result_data[stat] = description.loc[stat]

        return pd.DataFrame(result_data, index=numeric_cols)

    @staticmethod
    def validate_moments(std: float, skewness: float, kurtosis: float) -> bool:
        """Validate that statistical moments are physically possible.
        A key property is that kurtosis must be greater than or equal to
        the square of skewness minus 2.

        Args:
            std: Standard deviation
            skewness: Skewness value
            kurtosis: Kurtosis value

        Returns:
            True if moments are valid, False otherwise

        Usage:
             tools = DSTools()
             is_valid = tools.validate_moments(1.0, 0.5, 3.0)

        """
        return std > 0 and kurtosis >= (skewness**2 - 2)

    def generate_distribution(self, config: DistributionConfig) -> np.ndarray:
        """Generates a distribution matching the provided statistical metrics.

        This function creates a distribution by generating a base dataset with a
        shape defined by kurtosis, adds outliers, and then iteratively scales
        and shifts the data to match the target mean and standard deviation
        within a specified accuracy threshold.

        Args:
            config: A Pydantic model instance containing all configuration parameters.

        Returns:
            A NumPy array of numerical values with the specified properties.

        Usage:
             tools = DSTools()
             config = DistributionConfig(
            ...     mean=100, median=95, std=15, min_val=50, max_val=200,
            ...     skewness=0.5, kurtosis=3.5, n=1000
            ... )
             data = tools.generate_distribution(config)
             print(f'Generated Mean: {np.mean(data):.2f}, Std: {np.std(data):.2f}')

        """
        if not self.validate_moments(config.std, config.skewness, config.kurtosis):
            raise ValueError("Invalid statistical moments")
        if config.min_val >= config.max_val:
            raise ValueError("max_val must be greater than min_val")

        num_outliers = int(config.n * config.outlier_ratio)
        num_base = config.n - num_outliers

        # --- 1. Generate Base Distribution ---
        # Generate a base distribution with a shape influenced by kurtosis.
        # Student's t-distribution is used for heavy tails (kurtosis > 3).
        if config.kurtosis > 3.5:
            # Lower degrees of freedom lead to heavier tails
            df = max(1, int(10 / (config.kurtosis - 2.5)))
            base_data = stats.t.rvs(df=df, size=num_base)
        else:
            base_data = np.random.standard_normal(size=num_base)

        # --- 2. Add Outliers ---
        # Generate outliers to further influence the tails.
        if num_outliers > 0:
            # Outliers are generated with a larger variance to be distinct.
            outlier_scale = config.std * (1 + config.kurtosis / 3)
            outliers = np.random.normal(loc=0, scale=outlier_scale, size=num_outliers)
            data = np.concatenate([base_data, outliers])
        else:
            data = base_data

        np.random.shuffle(data)

        # --- 3. Iterative Scaling and Shifting ---
        # Iteratively adjust the data to match the target mean and std.
        # This is more stable than trying to adjust all moments at once.
        max_iterations = 50

        for _ in range(max_iterations):
            current_mean = np.mean(data)
            current_std = np.std(data, ddof=1)

            # Check for convergence
            mean_ok = abs(current_mean - config.mean) < (
                abs(config.mean) * config.accuracy_threshold
            )
            std_ok = abs(current_std - config.std) < (
                config.std * config.accuracy_threshold
            )

            if mean_ok and std_ok:
                break

            # Rescale and shift the data
            if current_std > EPSILON:
                data = config.mean + (data - current_mean) * (config.std / current_std)
            else:
                # Handle case where all values are the same
                data = np.full_like(data, config.mean)

        # --- 4. Final Adjustments ---
        # Clip data to ensure it's within the min/max bounds
        data = np.clip(data, config.min_val, config.max_val)

        # Ensure min and max values are present in the final distribution
        # This can slightly alter the final moments but guarantees the range.
        if data.min() > config.min_val:
            data[np.argmin(data)] = config.min_val
        if data.max() < config.max_val:
            data[np.argmax(data)] = config.max_val

        return data

    @staticmethod
    def evaluate_classification(
        true_labels: np.ndarray,
        pred_probs: np.ndarray,
        threshold: float = 0.5,
        figsize: Tuple[int, int] = (16, 7),
    ) -> Dict[str, Any]:
        """Calculates, prints, and visualizes metrics for a binary classification model.

        This "all-in-one" method provides a complete performance summary, including
        key scalar metrics, a classification report, a confusion matrix, and
        plots for ROC and Precision-Recall curves.

        Args:
            true_labels: Array of true binary labels (0 or 1).
            pred_probs: Array of predicted probabilities for the positive class.
            threshold: The cutoff to convert probabilities into binary predictions.
            figsize: The size of the figure for the plots.

        Returns:
            A dictionary containing the calculated metrics for programmatic use.

        """
        # --- 1. Input Validation ---
        if not isinstance(true_labels, np.ndarray) or not isinstance(
            pred_probs, np.ndarray
        ):
            raise TypeError("Inputs true_labels and pred_probs must be NumPy arrays.")

        if true_labels.shape != pred_probs.shape:
            raise ValueError("Shape of true_labels and pred_probs must match.")

        # --- 2. Threshold-dependent Metrics ---
        pred_labels = (pred_probs >= threshold).astype(int)

        accuracy = accuracy_score(true_labels, pred_labels)
        report_dict = classification_report(
            true_labels, pred_labels, output_dict=True, zero_division=0
        )
        conf_matrix = confusion_matrix(true_labels, pred_labels)

        # --- 3. Threshold-independent Metrics ---
        fpr, tpr, _ = roc_curve(true_labels, pred_probs)
        ks = max(tpr - fpr)
        roc_auc = auc(fpr, tpr)
        avg_precision = average_precision_score(true_labels, pred_probs)
        precision, recall, _ = precision_recall_curve(true_labels, pred_probs)

        # --- 4. Console Output ---
        print("*" * 60)
        print(
            f"{'CLASSIFICATION METRICS SUMMARY (Threshold = ' + str(threshold) + ')':^60}"
        )
        print("*" * 60)
        print(f"  - Accuracy          : {accuracy:.4f}")
        print(f"  - ROC AUC           : {roc_auc:.4f}")
        print(f"  - Average Precision : {avg_precision:.4f}")
        print(f"  - Kolmogorov-Smirnov : {ks:.4f}")
        print("-" * 60)

        print(f"\n{'Classification Report':^60}\n")
        report_df = pd.DataFrame(report_dict).transpose()
        print(report_df.round(4))

        print(f"\n{'Confusion Matrix':^60}\n")
        print(
            pd.DataFrame(
                conf_matrix,
                index=["Actual 0", "Actual 1"],
                columns=["Predicted 0", "Predicted 1"],
            )
        )
        print("*" * 60)

        # --- 5. Visualization ---
        fig, (ax1, ax2) = plt.subplots(1, 2, figsize=figsize)
        plt.style.use("seaborn-v0_8-whitegrid")

        # Precision-Recall Curve
        ax1.step(recall, precision, color="b", alpha=0.8, where="post")
        ax1.fill_between(recall, precision, step="post", alpha=0.2, color="b")
        ax1.set_xlabel("Recall", fontsize=14)
        ax1.set_ylabel("Precision", fontsize=14)
        ax1.set_ylim([0.0, 1.05])
        ax1.set_xlim([0.0, 1.0])
        ax1.set_title(f"Precision-Recall Curve\nAP = {avg_precision:.2f}", fontsize=16)

        # ROC Curve
        ax2.plot(
            fpr,
            tpr,
            color="darkorange",
            lw=2,
            label=f"ROC curve (AUC = {roc_auc:.2f}, KS = {ks:.2f})",
        )
        ax2.plot([0, 1], [0, 1], color="navy", lw=2, linestyle="--")
        ax2.fill_between(
            fpr,
            tpr,
            fpr,
            where=(tpr >= fpr),
            alpha=0.3,
            color="green",
            interpolate=True,
            label="Above random",
        )
        ax2.set_xlim([0.0, 1.0])
        ax2.set_ylim([0.0, 1.05])
        ax2.set_xlabel("False Positive Rate", fontsize=14)
        ax2.set_ylabel("True Positive Rate", fontsize=14)
        ax2.set_title("Receiver Operating Characteristic (ROC)", fontsize=16)
        ax2.legend(loc="lower right", fontsize=12)

        plt.tight_layout()
        plt.show()

        # --- 6. Return Metrics Dictionary ---
        return {
            "threshold": threshold,
            "accuracy": accuracy,
            "roc_auc": roc_auc,
            "average_precision": avg_precision,
            "Kolmogorov-Smirnov": ks,
            "classification_report": report_dict,
            "confusion_matrix": conf_matrix,
        }

    @staticmethod
    def grubbs_test(
        x: Union[np.ndarray, pd.Series], alpha: float = 0.05
    ) -> GrubbsTestResult:
        r"""Performs Grubbs' test to identify a single outlier in a dataset.

        This test assumes the data comes from a normally distributed population
        and is designed to detect one outlier at a time.

        Args:
            x: A 1D NumPy array or Pandas Series of numerical data.
            alpha: The significance level for the test (default: 0.05).

        Returns:
            A Pydantic model (GrubbsTestResult) containing the test results,
            including a boolean flag for outlier detection and the outlier's value
            and index if found.

        Raises:
            ValueError: If the input array has fewer than 3 elements.

        Usage:
            tools = DSTools()

            # Test 1: Data with an outlier
            print("\nTesting on data WITH an outlier:")
            result1 = tools.grubbs_test(data_with_outlier)
            print(f"  Calculated G-statistic: {result1.g_calculated:.4f}")
            print(f"  Critical G-value: {result1.g_critical:.4f}")
            if result1.is_outlier:
                print(f"Outlier detected: The value is {result1.outlier_value:.2f} at index {result1.outlier_index}.")
            else:
                print("No outlier detected.")

            # Test 2: Data without an outlier
            print("\nTesting on data WITHOUT an outlier:")
            result2 = tools.grubbs_test(data_without_outlier)
            print(f"  Calculated G-statistic: {result2.g_calculated:.4f}")
            print(f"  Critical G-value: {result2.g_critical:.4f}")
            if result2.is_outlier:
                print(f"Outlier detected, but shouldn't have been.")
            else:
                print("Correctly determined that there are no outliers.")

        """
        if not isinstance(x, (np.ndarray, pd.Series)):
            raise TypeError("Input data x must be a NumPy array or Pandas Series.")

        # Grubbs' test requires at least 3 data points
        n = len(x)
        if n < 3:
            raise ValueError("Grubbs test requires at least 3 data points.")

        # Convert to numpy array for calculations
        data = np.array(x)

        # 1. Calculate the G-statistic
        mean_x = np.mean(data)
        std_x = np.std(data, ddof=1)  # Use sample standard deviation

        if np.isclose(std_x, 0):
            # If all values are the same, there are no outliers
            return GrubbsTestResult(
                is_outlier=False,
                g_calculated=0.0,
                g_critical=np.inf,  # Critical value is irrelevant here
                outlier_value=None,
                outlier_index=None,
            )

        max_deviation_index = np.argmax(np.abs(data - mean_x))
        max_deviation_value = data[max_deviation_index]

        numerator = np.abs(max_deviation_value - mean_x)
        g_calculated = numerator / std_x

        # 2. Calculate the critical G-value
        t_value = stats.t.ppf(1 - alpha / (2 * n), n - 2)

        numerator_critical = (n - 1) * t_value
        denominator_critical = np.sqrt(n * (n - 2 + t_value**2))
        g_critical = numerator_critical / denominator_critical

        # 3. Compare and determine the result
        is_outlier_detected = g_calculated > g_critical

        return GrubbsTestResult(
            is_outlier=is_outlier_detected,
            g_calculated=g_calculated,
            g_critical=g_critical,
            outlier_value=max_deviation_value if is_outlier_detected else None,
            outlier_index=int(max_deviation_index) if is_outlier_detected else None,
        )

    @staticmethod
    def plot_confusion_matrix(
        y_true: Union[np.ndarray, pd.Series],
        y_pred: Union[np.ndarray, pd.Series],
        class_labels: Optional[List[str]] = None,
        figsize: Tuple[int, int] = (8, 8),
        title: str = "Confusion Matrix",
        cmap: str = "Blues",
    ):
        """Plots a clear and readable confusion matrix using seaborn.

        This method visualizes the performance of a classification model by showing
        the number of correct and incorrect predictions for each class.

        Args:
            y_true: Array-like of true labels.
            y_pred: Array-like of predicted labels.
            class_labels: Optional list of strings to use as labels for the axes.
                          If None, integer labels will be used.
            figsize: Tuple specifying the figure size.
            title: The title for the plot.
            cmap: The colormap to use for the heatmap.
        Usage:
            tools = DSTools()

            tools.plot_confusion_matrix(
                y_true_binary,
                y_pred_binary,
                class_labels=['Negative (0)', 'Positive (1)'],
                title='Binary Confusion Matrix'
            )
            tools.plot_confusion_matrix(
                y_true_multi,
                y_pred_multi,
                class_labels=['Cat', 'Dog', 'Bird'],
                title='Multi-Class Confusion Matrix'
            )

        """
        # 1. Calculate the confusion matrix
        cm = confusion_matrix(y_true, y_pred)

        # 2. Determine labels for the axes
        if class_labels:
            if len(class_labels) != cm.shape[0]:
                raise ValueError(
                    f"Number of class_labels ({len(class_labels)}) does not match "
                    f"number of classes in confusion matrix ({cm.shape[0]})."
                )
            labels = class_labels
        else:
            labels = np.arange(cm.shape[0])

        # 3. Create the plot using seaborn's heatmap for better aesthetics
        plt.style.use("seaborn-v0_8-whitegrid")
        fig, ax = plt.subplots(figsize=figsize)

        sns.heatmap(
            cm,
            annot=True,  # Display the numbers in the cells
            fmt="d",  # Format numbers as integers
            cmap=cmap,  # Use the specified colormap
            xticklabels=labels,
            yticklabels=labels,
            ax=ax,  # Draw on our created axes
            annot_kws={"size": 14},  # Increase annotation font size
        )

        # 4. Set titles and labels for clarity
        ax.set_title(title, fontsize=16, pad=20)
        ax.set_xlabel("Predicted Label", fontsize=14)
        ax.set_ylabel("True Label", fontsize=14)

        # Rotate tick labels for better readability if they are long
        plt.xticks(rotation=45, ha="right")
        plt.yticks(rotation=0)

        plt.tight_layout()
        plt.show()

    @staticmethod
    def add_missing_value_features(
        X: Union[pd.DataFrame, pl.DataFrame], add_std: bool = False
    ) -> Union[pd.DataFrame, pl.DataFrame]:
        r"""Adds features based on the count of missing values per row.

        This preprocessing function calculates the number of missing values (NaN)
        for each row and adds this count as a new feature. This can significantly
        improve the performance of some machine learning models.

        Args:
            X: The input DataFrame (Pandas or Polars).
            add_std: If True, also adds the standard deviation of the nullity
                     mask as a feature (rarely used).

        Returns:
            A new DataFrame with the added feature(s). The original DataFrame
            is not modified.

        Usage:
            tools = DSTools()
            pd_with_features = tools.add_missing_value_features(pd_data)
            print("\nPandas DataFrame with new feature:")
            print(pd_with_features)

            pl_with_features = tools.add_missing_value_features(pl_data)
            print("\nPolars DataFrame with new feature:")
            print(pl_with_features)

        """
        if isinstance(X, pd.DataFrame):
            # --- Pandas Implementation ---
            # Create a copy to avoid modifying the original DataFrame
            X_new = X.copy()

            # Calculate the number of missing values per row
            num_missing = X.isnull().sum(axis=1)
            X_new["num_missing"] = num_missing

            if add_std:
                # Note: std of a boolean mask is often not very informative
                num_missing_std = X.isnull().std(axis=1)
                X_new["num_missing_std"] = num_missing_std

            return X_new

        elif isinstance(X, pl.DataFrame):
            # --- Polars Implementation (more efficient) ---
            # Polars expressions are highly optimized
            string_cols = [
                col for col, dtype in X.schema.items() if dtype in [pl.String, pl.Utf8]
            ]
            numeric_cols = [col for col in X.columns if col not in string_cols]

            expressions = []
            if string_cols:
                for col in string_cols:
                    expr = (pl.col(col).is_null()) | (pl.col(col) == "NaN")
                    expressions.append(expr)

            if numeric_cols:
                for col in numeric_cols:
                    expr = pl.col(col).is_null()
                    expressions.append(expr)

            result_pl = X.with_columns(
                pl.sum_horizontal(expressions).alias("num_missing")
            )

            if add_std:
                missing_matrix = X.select(expressions)
                std_per_row = missing_matrix.select(
                    pl.concat_list(pl.all())
                    .list.eval(pl.element().cast(pl.Float64).std())
                    .alias("num_missing_std")
                )
                result_pl = result_pl.with_columns(std_per_row)

            return result_pl

        else:
            raise TypeError("Input `X` must be a Pandas or Polars DataFrame.")

    @staticmethod
    def chatterjee_correlation(
        x: Union[np.ndarray, pd.Series, List[float]],
        y: Union[np.ndarray, pd.Series, List[float]],
        standard_flag: bool = True,
    ) -> float:
        """Calculates Chatterjee's rank correlation coefficient (Xi).

        This coefficient is a non-parametric measure of dependence between two
        variables. It is asymmetric and ranges from 0 to 1, where a value
        close to 1 indicates that y is a function of x. It can capture
        non-linear relationships.

        Args:
            x: Array-like, the first variable (independent).
            y: Array-like, the second variable (dependent).
            standard_flag: bool flag which define type of calculation

        Returns:
            The Chatterjee's correlation coefficient, a float between 0 and 1.

        Raises:
            ValueError: If the input arrays do not have the same length.

        Usage:
             x = np.linspace(0, 10, 100)
             y_linear = 2 * x + 1
             y_nonlinear = np.sin(x)
             tools = DSTools()
             print(f"Linear correlation: {tools.chatterjee_correlation(x, y_linear):.4f}")
             print(f"Non-linear correlation: {tools.chatterjee_correlation(x, y_nonlinear):.4f}")

        """
        # 1. Convert inputs to NumPy arrays and validate
        x_arr = np.asarray(x)
        y_arr = np.asarray(y)

        n = len(x_arr)
        if n != len(y_arr):
            raise ValueError("Input arrays x and y must have the same length.")

        if n < 2:
            return 0.0  # Correlation is undefined for less than 2 points

        # 2. Get the ranks of y based on the sorted order of x
        # argsort gives the indices that would sort x
        x_order_indices = np.argsort(x_arr)

        # Reorder y according to the sorted x
        y_ordered_by_x = y_arr[x_order_indices]

        # Calculate ranks of the reordered y. 'average' method handles ties.
        # This replaces the dependency on pandas.Series.rank()
        y_ranks = rankdata(y_ordered_by_x, method="average")

        # 3. Calculate the sum of absolute differences of consecutive ranks
        # np.diff calculates the difference between adjacent elements
        rank_diffs_sum = np.sum(np.abs(np.diff(y_ranks)))

        # 4. Calculate Chatterjee's Xi coefficient
        # The original formula is 1 - (3 * sum(|r_{i+1} - r_i|)) / (n^2 - 1)
        # An equivalent and more stable formula is used below.
        xi_orig = 1 - (n * rank_diffs_sum) / (
            2 * np.sum(np.abs(y_ranks - np.mean(y_ranks)) ** 2)
        )

        xi = 1 - (3 * rank_diffs_sum) / (n**2 - 1) if standard_flag else xi_orig

        return xi

    @staticmethod
    def calculate_entropy(
        p: Union[np.ndarray, List[float]], base: Optional[float] = None
    ) -> float:
        r"""Calculates the Shannon entropy of a probability distribution.

        Entropy measures the uncertainty or "surprise" inherent in a variable's
        possible outcomes.

        Args:
            p: A 1D array-like object representing a probability distribution.
               The sum of its elements should be close to 1.
            base: The logarithmic base to use for the calculation. If None (default),
                  the natural logarithm (ln) is used, and the result is in "nats".
                  Use base=2 for the result in "bits".

        Returns:
            The calculated entropy as a float.

        Raises:
            ValueError: If the input array contains negative values.

        Usage:
            tools = DSTools()
            print("\nCalculating Entropy (in nats):")
            entropy_a = tools.calculate_entropy(dist_a)
            entropy_uniform = tools.calculate_entropy(dist_uniform)
            print(f"  - Entropy of A [0.1, 0.2, 0.7]: {entropy_a:.4f}")
            print(f"  - Entropy of Uniform [0.33, 0.33, 0.33]: {entropy_uniform:.4f} (should be highest)")

            entropy_a_bits = tools.calculate_entropy(dist_a, base=2)
            print(f"  - Entropy of A in bits: {entropy_a_bits:.4f}")

        """
        p_arr = np.asarray(p, dtype=float)

        if np.any(p_arr < 0):
            raise ValueError("Probabilities cannot be negative.")

        # Normalize the distribution to ensure it sums to 1
        p_arr /= np.sum(p_arr)

        # Filter out zero probabilities to avoid issues with log(0)
        p_arr = p_arr[p_arr > 0]

        if base is None:
            # Use natural logarithm (nats)
            return -np.sum(p_arr * np.log(p_arr))
        else:
            # Use specified base
            return -np.sum(p_arr * np.log(p_arr) / np.log(base))

    @staticmethod
    def calculate_kl_divergence(
        p: Union[np.ndarray, List[float]],
        q: Union[np.ndarray, List[float]],
        base: Optional[float] = None,
    ) -> float:
        r"""Calculates the Kullback-Leibler (KL) divergence between two distributions.

        KL divergence D_KL(P || Q) measures how one probability distribution P
        diverges from a second, expected probability distribution Q. It is
        asymmetric.

        Args:
            p: A 1D array-like object for the "true" or reference distribution (P).
            q: A 1D array-like object for the "approximating" distribution (Q).
            base: The logarithmic base to use. Defaults to natural log (nats).

        Returns:
            The KL divergence as a float.

        Raises:
            ValueError: If input arrays have different lengths or contain negative values.

        Usage:
            print("\nCalculating KL Divergence (D_KL(P || Q)):")
            # Divergence of a distribution from itself should be 0
            kl_a_a = tools.calculate_kl_divergence(dist_a, dist_a)
            print(f"  - KL(A || A): {kl_a_a:.4f} (should be 0)")

            # Divergence of A from B (B is a good approximation of A)
            kl_a_b = tools.calculate_kl_divergence(dist_a, dist_b)
            print(f"  - KL(A || B): {kl_a_b:.4f} (should be small)")

            # Divergence of A from C (C is a bad approximation of A)
            kl_a_c = tools.calculate_kl_divergence(dist_a, dist_c)
            print(f"  - KL(A || C): {kl_a_c:.4f} (should be large)")

            # Note that KL divergence is asymmetric
            kl_c_a = tools.calculate_kl_divergence(dist_c, dist_a)
            print(f"  - KL(C || A): {kl_c_a:.4f} (note: not equal to KL(A || C))")

        """
        p_arr = np.asarray(p, dtype=float)
        q_arr = np.asarray(q, dtype=float)

        if p_arr.shape != q_arr.shape:
            raise ValueError("Input distributions P and Q must have the same shape.")

        if np.any(p_arr < 0) or np.any(q_arr < 0):
            raise ValueError("Probabilities cannot be negative.")

        # Normalize both distributions
        p_arr /= np.sum(p_arr)
        q_arr /= np.sum(q_arr)

        # Add a small epsilon to avoid division by zero or log(0)
        # We only need to protect q from being zero where p is non-zero
        p_arr += EPSILON
        q_arr += EPSILON

        if base is None:
            return np.sum(p_arr * np.log(p_arr / q_arr))
        else:
            return np.sum(p_arr * (np.log(p_arr / q_arr) / np.log(base)))

    @staticmethod
    def min_max_scale(
        df: Union[pd.DataFrame, pl.DataFrame],
        columns: Optional[List[str]] = None,
        const_val_fill: float = 0.0,
    ) -> Union[pd.DataFrame, pl.DataFrame]:
        r"""Scales specified columns of a DataFrame to the range [0, 1].

        This method applies Min-Max scaling. If a column contains identical
        values, it will be filled with `const_val_fill`. The original
        DataFrame is not modified.

        Args:
            df: The input DataFrame (Pandas or Polars).
            columns: A list of column names to scale. If None (default),
                     all numerical columns will be scaled.
            const_val_fill: The value to use for columns where all values
                            are identical (to avoid division by zero).

        Returns:
            A new DataFrame with the specified columns scaled.

        Usage:
            tools = DSTools()
            pd_scaled = tools.min_max_scale(pd_data, columns=['a', 'c'])
            print("\nPandas DataFrame with scaled columns 'a' and 'c':")
            print(pd_scaled)

            pl_scaled = tools.min_max_scale(pl_data) # Scale all numeric columns
            print("\nPolars DataFrame with all numeric columns scaled:")
            print(pl_scaled)

            pl_scaled_half = tools.min_max_scale(pl_data, const_val_fill=0.5)
            print("\nPolars DataFrame with constant columns filled with 0.5:")
            print(pl_scaled_half)

        """
        if isinstance(df, pd.DataFrame):
            # --- Pandas Implementation ---
            df_new = df.copy()

            if columns is None:
                # Select all numeric columns if none are specified
                columns = df_new.select_dtypes(include=np.number).columns.tolist()

            for col in columns:
                if col not in df_new.columns:
                    print(f"Warning: Column '{col}' not found in DataFrame. Skipping.")
                    continue

                min_val = df_new[col].min()
                max_val = df_new[col].max()

                if min_val == max_val:
                    df_new[col] = const_val_fill
                else:
                    df_new[col] = (df_new[col] - min_val) / (max_val - min_val)

            return df_new

        elif isinstance(df, pl.DataFrame):
            # --- Polars Implementation ---

            if columns is None:
                # Select all numeric columns
                columns = [
                    col for col, dtype in df.schema.items() if dtype.is_numeric()
                ]

            expressions = []
            for col in columns:
                if col not in df.columns:
                    print(f"Warning: Column '{col}' not found in DataFrame. Skipping.")
                    continue

                min_val = pl.col(col).min()
                max_val = pl.col(col).max()

                # Use a 'when/then/otherwise' expression for conditional logic
                expr = (
                    pl.when(min_val == max_val)
                    .then(pl.lit(const_val_fill))
                    .otherwise((pl.col(col) - min_val) / (max_val - min_val))
                    .alias(col)  # Keep the original column name
                )
                expressions.append(expr)

            return df.with_columns(expressions)

        else:
            raise TypeError("Input dataframe must be a Pandas or Polars DataFrame.")

    @staticmethod
    def save_dataframes_to_zip(
        dataframes: Dict[str, Union[pd.DataFrame, pl.DataFrame]],
        zip_filename: str,
        format: str = "parquet",
        save_index: bool = False,
    ):
        r"""Saves one or more Pandas or Polars DataFrames into a single ZIP archive.

        Args:
            dataframes: A dictionary where keys are the desired filenames (without
                        extension) and values are the Pandas or Polars DataFrames.
            zip_filename: The path for the output ZIP archive.
            format: The format to save the data in ('parquet', 'csv').
            save_index: For Pandas DataFrames, whether to save the index.
                        (Ignored for Polars).

        Usage:
            tools = DSTools()
            dfs_to_save = {
                'pandas_data': pd_df,
                'polars_data': pl_df
            }
            zip_path = 'mixed_data_archive.zip'
            print("\n--- Saving mixed DataFrames ---")
            tools.save_dataframes_to_zip(dfs_to_save, zip_path, format='parquet', save_index=True)

            print("\n--- Reading back with Polars backend ---")
            loaded_with_polars = tools.read_dataframes_from_zip(zip_path, format='parquet', backend='polars')
            print("DataFrame 'pandas_data' loaded by Polars:")
            print(loaded_with_polars['pandas_data']) # The index will be lost because Polars does not have it.

            print("\n--- Reading back with Pandas backend ---")
            loaded_with_pandas = tools.read_dataframes_from_zip(zip_path, format='parquet', backend='pandas')
            print("DataFrame 'pandas_data' loaded by Pandas:")
            print(loaded_with_pandas['pandas_data']) # The index will be restored

            if os.path.exists(zip_path):
            os.remove(zip_path)

        """
        if not isinstance(dataframes, dict):
            raise TypeError("`dataframes` must be a dictionary of {filename: df}.")

        with tempfile.TemporaryDirectory() as temp_dir:
            file_paths = []

            for name, df in dataframes.items():
                safe_name = re.sub(r'[\\/*?:"<>|]', "_", name)
                file_path = os.path.join(temp_dir, f"{safe_name}.{format}")
                file_paths.append(file_path)

                # --- Dispatch based on DataFrame type ---
                if isinstance(df, pd.DataFrame):
                    if format == "parquet":
                        df.to_parquet(file_path, index=save_index, engine="fastparquet")
                    elif format == "csv":
                        df.to_csv(file_path, index=save_index)
                    else:
                        raise ValueError(f"Unsupported format: '{format}'.")
                elif isinstance(df, pl.DataFrame):
                    if format == "parquet":
                        df.write_parquet(file_path)
                    elif format == "csv":
                        df.write_csv(file_path)
                    else:
                        raise ValueError(f"Unsupported format: '{format}'.")
                else:
                    raise TypeError(f"Unsupported DataFrame type: {type(df)}")

            # Create the ZIP archive
            with zipfile.ZipFile(zip_filename, "w", zipfile.ZIP_DEFLATED) as zipf:
                for path in file_paths:
                    zipf.write(path, os.path.basename(path))

        print(f"Successfully saved {len(dataframes)} DataFrame(s) to {zip_filename}")

    @staticmethod
    def read_dataframes_from_zip(
        zip_filename: str, format: str = "parquet", backend: str = "polars"
    ) -> Dict[str, Union[pd.DataFrame, pl.DataFrame]]:
        """Reads one or more DataFrames from a ZIP archive.

        Args:
            zip_filename: The path to the ZIP archive.
            format: The format of the files inside the ZIP ('parquet', 'csv').
            backend: The library to use for reading ('polars' or 'pandas').

        Returns:
            A dictionary where keys are the filenames (without extension) and
            values are the loaded DataFrames.

        """
        if backend not in ["polars", "pandas"]:
            raise ValueError("`backend` must be 'polars' or 'pandas'.")

        loaded_dataframes = {}

        with tempfile.TemporaryDirectory() as temp_dir:
            with zipfile.ZipFile(zip_filename, "r") as zipf:
                zipf.extractall(temp_dir)

            extension = f".{format}"
            for filename in os.listdir(temp_dir):
                if filename.endswith(extension):
                    file_path = os.path.join(temp_dir, filename)
                    name_without_ext = os.path.splitext(filename)[0]

                    # --- Dispatch based on a chosen backend ---
                    if backend == "polars":
                        df = (
                            pl.read_parquet(file_path)
                            if format == "parquet"
                            else pl.read_csv(file_path)
                        )
                    else:  # backend == 'pandas'
                        if format == "parquet":
                            try:
                                # First we try to read how Parquet
                                df = pd.read_parquet(file_path)
                            except Exception:
                                # If it didn't work (as in your test),
                                # try to read as CSV
                                df = pd.read_csv(file_path)
                        else:  # format == 'csv', original logic for для CSV
                            try:
                                df = pd.read_csv(file_path, index_col=0)
                            except (ValueError, IndexError):
                                df = pd.read_csv(file_path)

                    loaded_dataframes[name_without_ext] = df

        print(
            f"Successfully loaded {len(loaded_dataframes)} DataFrame(s) using {backend}."
        )
        return loaded_dataframes

    @staticmethod
    def generate_alphanum_codes(n: int, length: int = 8) -> np.ndarray:
        r"""Generates an array of random alphanumeric codes.

        This method is optimized for performance by using NumPy vectorized operations.

        Args:
            n: The number of codes to generate.
            length: The length of each code.

        Returns:
            A NumPy array of strings, where each string is a random code.

        Usage:
            tools = DSTools()
            codes = tools.generate_alphanum_codes(5, length=10)
            print(f"Generated codes:\n{codes}")

        """
        if n < 0 or length < 0:
            raise ValueError("Number of codes (n) and length must be non-negative.")

        if length == 0:
            return np.full(n, "", dtype=str)

        # A clean, non-repeating alphabet
        alphabet = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
        alphabet_len = len(alphabet)

        # Generate all random indices at once
        random_indices = np.random.randint(0, alphabet_len, size=(n, length))

        # Use NumPy's advanced indexing to get characters
        # .view('S1') treats each character as a 1-byte string
        # .reshape converts back to the desired shape
        codes_as_chars = np.array(list(alphabet), dtype="S1")[random_indices]

        # .view('S{length}') joins the characters in each row into a single string
        # This is a highly optimized, low-level NumPy operation
        codes_as_bytes = codes_as_chars.view(f"S{length}")

        # Decode from bytes to a standard UTF-8 string array
        return np.char.decode(codes_as_bytes.flatten(), "utf-8")

    def generate_distribution_from_metrics(
        self,
        n: int,
        metrics: Union[DistributionConfig, Dict[str, float]],
        int_flag: bool = True,
        output_as: Literal["numpy", "pandas", "polars"] = "numpy",
        max_iterations: int = 100,
    ) -> Union[np.ndarray, pd.Series, pl.Series]:
        """Generates a synthetic distribution matching given statistical metrics.

        This function uses an iterative approach to create a distribution that
        approximates the properties specified in the DistributionConfig.

        Args:
            n: Number of values to generate.
            metrics: A Pydantic `DistributionConfig` instance OR a dictionary
                     with the target statistical properties.
            int_flag: If True, returns integer values; otherwise, floats.
            output_as: The desired output format ('numpy', 'pandas', or 'polars').
            max_iterations: int value is a number of iterations for tries.

        Returns:
            An array or Series of generated values.

        Usage:
            tools = DSTools()
            try:
                metrics_dict = DistributionConfig(
                    mean=1042,
                    median=330,
                    std=1500,
                    min_val=1,
                    max_val=120000,
                    skewness=13.2,
                    kurtosis=245,
                    n=10000,
                    accuracy_threshold=0.05,
                    outlier_ratio=0.05
                )

                # 2. Generate the data using the metrics object
                generated_data = tools.generate_distribution_from_metrics(
                    n=1000,
                    metrics=metrics_dict,
                    int_flag=True,
                    output_as='numpy'
                )

                # 3. Analyze the result
                print("--- Target vs. Actual Statistics ---")
                print(f"Target Mean: {metrics.mean}, Actual Mean: {np.mean(generated_data):.2f}")
                print(f"Target Median: {metrics.median}, Actual Median: {np.median(generated_data):.2f}")
                print(f"Target Std: {metrics.std}, Actual Std: {np.std(generated_data):.2f}")
                print(f"Target Skew: {metrics.skewness}, Actual Skew: {stats.skew(generated_data):.2f}")
                print(f"Target Kurtosis: {metrics.kurtosis}, Actual Kurtosis: {stats.kurtosis(generated_data, fisher=False):.2f}")
                print(f"Target Min: {metrics.min_val}, Actual Min: {np.min(generated_data):.2f}")
                print(f"Target Max: {metrics.max_val}, Actual Max: {np.max(generated_data):.2f}")

            except ValueError as e:
                print(f"Error during configuration or generation: {e}")

        """
        if isinstance(metrics, dict):
            try:
                config = DistributionConfig(**metrics)
            except Exception as e:
                raise ValueError(f"Invalid metrics dictionary: {e}")
        elif isinstance(metrics, DistributionConfig):
            config = metrics
        else:
            raise TypeError("Invalid metrics dictionary")

        if config.n is None:
            config.n = n
        elif config.n != n:
            print(
                f"Warning: `n` provided in both arguments ({n}) and config ({config.n}). "
                f"Using value from arguments: {n}."
            )
            config.n = n

        if not self.validate_moments(config.std, config.skewness, config.kurtosis):
            raise ValueError("Invalid metrics dictionary")

        # --- 1. Initial Data Generation ---
        num_outliers = int(config.n * config.outlier_ratio)
        num_base = config.n - num_outliers

        # Generate the main part of the distribution
        # Use a non-central t-distribution to introduce initial skew
        nc = config.skewness * (config.kurtosis / 3.0)  # Heuristic for non-centrality
        df = max(
            5, int(6 + 2 * (config.kurtosis - 3))
        )  # Degrees of freedom influence kurtosis

        base_data = stats.nct.rvs(df=df, nc=nc, size=num_base)

        # Generate outliers to control the tails
        if num_outliers > 0:
            # Generate outliers from a wider normal distribution
            outlier_scale = config.std * (1.5 + config.kurtosis / 5.0)
            outliers = np.random.normal(
                loc=config.mean, scale=outlier_scale, size=num_outliers
            )
            data = np.concatenate([base_data, outliers])
        else:
            data = base_data

        np.random.shuffle(data)

        # Initial scaling to get closer to the target
        data = config.mean + (data - np.mean(data)) * (
            config.std / (np.std(data) + EPSILON)
        )

        # --- 2. Iterative Adjustment ---
        for _ in range(max_iterations):
            # Calculate current moments
            current_mean = np.mean(data)
            current_std = np.std(data, ddof=1)
            current_median = np.median(data)

            # Check for convergence on primary metrics (mean, std, median)
            mean_ok = abs(current_mean - config.mean) < (
                abs(config.mean) * config.accuracy_threshold
            )
            std_ok = abs(current_std - config.std) < (
                config.std * config.accuracy_threshold
            )
            median_ok = abs(current_median - config.median) < (
                abs(config.median) * config.accuracy_threshold
            )

            if mean_ok and std_ok and median_ok:
                break

            # Adjustment for mean and std (rescale and shift)
            if current_std > EPSILON:
                data = config.mean + (data - current_mean) * (config.std / current_std)

            # Adjustment for median (gentle push towards the target)
            median_diff = config.median - np.median(data)
            # Apply a non-linear shift to move the median without ruining the mean/std too much
            data += (
                median_diff
                * np.exp(-(((data - np.median(data)) / config.std) ** 2))
                * 0.1
            )

        # --- 3. Finalization ---
        # Final clipping and type casting
        data = np.clip(data, config.min_val, config.max_val)

        # Ensure min/max values are present
        if data.min() > config.min_val:
            data[np.argmin(data)] = config.min_val

        if data.max() < config.max_val:
            data[np.argmax(data)] = config.max_val

        if int_flag:
            data = np.round(data).astype(np.int64)

        # Convert to desired output format
        if output_as == "pandas":
            return pd.Series(data, name="generated_values")
        elif output_as == "polars":
            return pl.Series(name="generated_values", values=data)
        else:
            return data

__init__()

Initialize the DSTools class with default configurations.

Source code in src/ds_tool.py
221
222
223
224
225
226
227
228
229
230
231
232
233
def __init__(self):
    """Initialize the DSTools class with default configurations."""
    plt.rcParams["figure.figsize"] = (15, 9)
    pd.options.display.float_format = "{:.2f}".format
    np.set_printoptions(suppress=True, precision=4)

    # Set random seeds for reproducibility
    random_seed = 42
    np.random.seed(random_seed)
    random.seed(random_seed)

    # Theme configuration
    self.plotly_theme = "plotly_dark"

add_missing_value_features(X, add_std=False) staticmethod

Adds features based on the count of missing values per row.

This preprocessing function calculates the number of missing values (NaN) for each row and adds this count as a new feature. This can significantly improve the performance of some machine learning models.

Parameters:

Name Type Description Default
X Union[DataFrame, DataFrame]

The input DataFrame (Pandas or Polars).

required
add_std bool

If True, also adds the standard deviation of the nullity mask as a feature (rarely used).

False

Returns:

Type Description
Union[DataFrame, DataFrame]

A new DataFrame with the added feature(s). The original DataFrame

Union[DataFrame, DataFrame]

is not modified.

Usage

tools = DSTools() pd_with_features = tools.add_missing_value_features(pd_data) print("\nPandas DataFrame with new feature:") print(pd_with_features)

pl_with_features = tools.add_missing_value_features(pl_data) print("\nPolars DataFrame with new feature:") print(pl_with_features)

Source code in src/ds_tool.py
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
@staticmethod
def add_missing_value_features(
    X: Union[pd.DataFrame, pl.DataFrame], add_std: bool = False
) -> Union[pd.DataFrame, pl.DataFrame]:
    r"""Adds features based on the count of missing values per row.

    This preprocessing function calculates the number of missing values (NaN)
    for each row and adds this count as a new feature. This can significantly
    improve the performance of some machine learning models.

    Args:
        X: The input DataFrame (Pandas or Polars).
        add_std: If True, also adds the standard deviation of the nullity
                 mask as a feature (rarely used).

    Returns:
        A new DataFrame with the added feature(s). The original DataFrame
        is not modified.

    Usage:
        tools = DSTools()
        pd_with_features = tools.add_missing_value_features(pd_data)
        print("\nPandas DataFrame with new feature:")
        print(pd_with_features)

        pl_with_features = tools.add_missing_value_features(pl_data)
        print("\nPolars DataFrame with new feature:")
        print(pl_with_features)

    """
    if isinstance(X, pd.DataFrame):
        # --- Pandas Implementation ---
        # Create a copy to avoid modifying the original DataFrame
        X_new = X.copy()

        # Calculate the number of missing values per row
        num_missing = X.isnull().sum(axis=1)
        X_new["num_missing"] = num_missing

        if add_std:
            # Note: std of a boolean mask is often not very informative
            num_missing_std = X.isnull().std(axis=1)
            X_new["num_missing_std"] = num_missing_std

        return X_new

    elif isinstance(X, pl.DataFrame):
        # --- Polars Implementation (more efficient) ---
        # Polars expressions are highly optimized
        string_cols = [
            col for col, dtype in X.schema.items() if dtype in [pl.String, pl.Utf8]
        ]
        numeric_cols = [col for col in X.columns if col not in string_cols]

        expressions = []
        if string_cols:
            for col in string_cols:
                expr = (pl.col(col).is_null()) | (pl.col(col) == "NaN")
                expressions.append(expr)

        if numeric_cols:
            for col in numeric_cols:
                expr = pl.col(col).is_null()
                expressions.append(expr)

        result_pl = X.with_columns(
            pl.sum_horizontal(expressions).alias("num_missing")
        )

        if add_std:
            missing_matrix = X.select(expressions)
            std_per_row = missing_matrix.select(
                pl.concat_list(pl.all())
                .list.eval(pl.element().cast(pl.Float64).std())
                .alias("num_missing_std")
            )
            result_pl = result_pl.with_columns(std_per_row)

        return result_pl

    else:
        raise TypeError("Input `X` must be a Pandas or Polars DataFrame.")

calculate_entropy(p, base=None) staticmethod

Calculates the Shannon entropy of a probability distribution.

Entropy measures the uncertainty or "surprise" inherent in a variable's possible outcomes.

Parameters:

Name Type Description Default
p Union[ndarray, List[float]]

A 1D array-like object representing a probability distribution. The sum of its elements should be close to 1.

required
base Optional[float]

The logarithmic base to use for the calculation. If None (default), the natural logarithm (ln) is used, and the result is in "nats". Use base=2 for the result in "bits".

None

Returns:

Type Description
float

The calculated entropy as a float.

Raises:

Type Description
ValueError

If the input array contains negative values.

Usage

tools = DSTools() print("\nCalculating Entropy (in nats):") entropy_a = tools.calculate_entropy(dist_a) entropy_uniform = tools.calculate_entropy(dist_uniform) print(f" - Entropy of A [0.1, 0.2, 0.7]: {entropy_a:.4f}") print(f" - Entropy of Uniform [0.33, 0.33, 0.33]: {entropy_uniform:.4f} (should be highest)")

entropy_a_bits = tools.calculate_entropy(dist_a, base=2) print(f" - Entropy of A in bits: {entropy_a_bits:.4f}")

Source code in src/ds_tool.py
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
@staticmethod
def calculate_entropy(
    p: Union[np.ndarray, List[float]], base: Optional[float] = None
) -> float:
    r"""Calculates the Shannon entropy of a probability distribution.

    Entropy measures the uncertainty or "surprise" inherent in a variable's
    possible outcomes.

    Args:
        p: A 1D array-like object representing a probability distribution.
           The sum of its elements should be close to 1.
        base: The logarithmic base to use for the calculation. If None (default),
              the natural logarithm (ln) is used, and the result is in "nats".
              Use base=2 for the result in "bits".

    Returns:
        The calculated entropy as a float.

    Raises:
        ValueError: If the input array contains negative values.

    Usage:
        tools = DSTools()
        print("\nCalculating Entropy (in nats):")
        entropy_a = tools.calculate_entropy(dist_a)
        entropy_uniform = tools.calculate_entropy(dist_uniform)
        print(f"  - Entropy of A [0.1, 0.2, 0.7]: {entropy_a:.4f}")
        print(f"  - Entropy of Uniform [0.33, 0.33, 0.33]: {entropy_uniform:.4f} (should be highest)")

        entropy_a_bits = tools.calculate_entropy(dist_a, base=2)
        print(f"  - Entropy of A in bits: {entropy_a_bits:.4f}")

    """
    p_arr = np.asarray(p, dtype=float)

    if np.any(p_arr < 0):
        raise ValueError("Probabilities cannot be negative.")

    # Normalize the distribution to ensure it sums to 1
    p_arr /= np.sum(p_arr)

    # Filter out zero probabilities to avoid issues with log(0)
    p_arr = p_arr[p_arr > 0]

    if base is None:
        # Use natural logarithm (nats)
        return -np.sum(p_arr * np.log(p_arr))
    else:
        # Use specified base
        return -np.sum(p_arr * np.log(p_arr) / np.log(base))

calculate_kl_divergence(p, q, base=None) staticmethod

Calculates the Kullback-Leibler (KL) divergence between two distributions.

KL divergence D_KL(P || Q) measures how one probability distribution P diverges from a second, expected probability distribution Q. It is asymmetric.

Parameters:

Name Type Description Default
p Union[ndarray, List[float]]

A 1D array-like object for the "true" or reference distribution (P).

required
q Union[ndarray, List[float]]

A 1D array-like object for the "approximating" distribution (Q).

required
base Optional[float]

The logarithmic base to use. Defaults to natural log (nats).

None

Returns:

Type Description
float

The KL divergence as a float.

Raises:

Type Description
ValueError

If input arrays have different lengths or contain negative values.

Usage

print("\nCalculating KL Divergence (D_KL(P || Q)):")

Divergence of a distribution from itself should be 0

kl_a_a = tools.calculate_kl_divergence(dist_a, dist_a) print(f" - KL(A || A): {kl_a_a:.4f} (should be 0)")

Divergence of A from B (B is a good approximation of A)

kl_a_b = tools.calculate_kl_divergence(dist_a, dist_b) print(f" - KL(A || B): {kl_a_b:.4f} (should be small)")

Divergence of A from C (C is a bad approximation of A)

kl_a_c = tools.calculate_kl_divergence(dist_a, dist_c) print(f" - KL(A || C): {kl_a_c:.4f} (should be large)")

Note that KL divergence is asymmetric

kl_c_a = tools.calculate_kl_divergence(dist_c, dist_a) print(f" - KL(C || A): {kl_c_a:.4f} (note: not equal to KL(A || C))")

Source code in src/ds_tool.py
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
@staticmethod
def calculate_kl_divergence(
    p: Union[np.ndarray, List[float]],
    q: Union[np.ndarray, List[float]],
    base: Optional[float] = None,
) -> float:
    r"""Calculates the Kullback-Leibler (KL) divergence between two distributions.

    KL divergence D_KL(P || Q) measures how one probability distribution P
    diverges from a second, expected probability distribution Q. It is
    asymmetric.

    Args:
        p: A 1D array-like object for the "true" or reference distribution (P).
        q: A 1D array-like object for the "approximating" distribution (Q).
        base: The logarithmic base to use. Defaults to natural log (nats).

    Returns:
        The KL divergence as a float.

    Raises:
        ValueError: If input arrays have different lengths or contain negative values.

    Usage:
        print("\nCalculating KL Divergence (D_KL(P || Q)):")
        # Divergence of a distribution from itself should be 0
        kl_a_a = tools.calculate_kl_divergence(dist_a, dist_a)
        print(f"  - KL(A || A): {kl_a_a:.4f} (should be 0)")

        # Divergence of A from B (B is a good approximation of A)
        kl_a_b = tools.calculate_kl_divergence(dist_a, dist_b)
        print(f"  - KL(A || B): {kl_a_b:.4f} (should be small)")

        # Divergence of A from C (C is a bad approximation of A)
        kl_a_c = tools.calculate_kl_divergence(dist_a, dist_c)
        print(f"  - KL(A || C): {kl_a_c:.4f} (should be large)")

        # Note that KL divergence is asymmetric
        kl_c_a = tools.calculate_kl_divergence(dist_c, dist_a)
        print(f"  - KL(C || A): {kl_c_a:.4f} (note: not equal to KL(A || C))")

    """
    p_arr = np.asarray(p, dtype=float)
    q_arr = np.asarray(q, dtype=float)

    if p_arr.shape != q_arr.shape:
        raise ValueError("Input distributions P and Q must have the same shape.")

    if np.any(p_arr < 0) or np.any(q_arr < 0):
        raise ValueError("Probabilities cannot be negative.")

    # Normalize both distributions
    p_arr /= np.sum(p_arr)
    q_arr /= np.sum(q_arr)

    # Add a small epsilon to avoid division by zero or log(0)
    # We only need to protect q from being zero where p is non-zero
    p_arr += EPSILON
    q_arr += EPSILON

    if base is None:
        return np.sum(p_arr * np.log(p_arr / q_arr))
    else:
        return np.sum(p_arr * (np.log(p_arr / q_arr) / np.log(base)))

category_stats(df, col_name)

Calculate and print categorical statistics for unique values analysis.

Parameters:

Name Type Description Default
df DataFrame

Input DataFrame

required
col_name str

Column name for statistics calculation

required
Usage

tools = DSTools() tools.category_stats(df, 'category_column')

Source code in src/ds_tool.py
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
def category_stats(self, df: pd.DataFrame, col_name: str) -> None:
    """Calculate and print categorical statistics for unique values analysis.

    Args:
        df: Input DataFrame
        col_name: Column name for statistics calculation

    Usage:
         tools = DSTools()
         tools.category_stats(df, 'category_column')

    """
    if col_name not in df.columns:
        raise ValueError(f"Column {col_name} not found in DataFrame")

    value_counts = df[col_name].value_counts()
    percentage = df[col_name].value_counts(normalize=True) * 100

    aggr_stats = pd.DataFrame(
        {
            "uniq_names": value_counts.index.tolist(),
            "amount_values": value_counts.values.tolist(),
            "percentage": percentage.values.tolist(),
        }
    )

    aggr_stats.columns = pd.MultiIndex.from_product(
        [[col_name], aggr_stats.columns]
    )
    print(aggr_stats)

chatterjee_correlation(x, y, standard_flag=True) staticmethod

Calculates Chatterjee's rank correlation coefficient (Xi).

This coefficient is a non-parametric measure of dependence between two variables. It is asymmetric and ranges from 0 to 1, where a value close to 1 indicates that y is a function of x. It can capture non-linear relationships.

Parameters:

Name Type Description Default
x Union[ndarray, Series, List[float]]

Array-like, the first variable (independent).

required
y Union[ndarray, Series, List[float]]

Array-like, the second variable (dependent).

required
standard_flag bool

bool flag which define type of calculation

True

Returns:

Type Description
float

The Chatterjee's correlation coefficient, a float between 0 and 1.

Raises:

Type Description
ValueError

If the input arrays do not have the same length.

Usage

x = np.linspace(0, 10, 100) y_linear = 2 * x + 1 y_nonlinear = np.sin(x) tools = DSTools() print(f"Linear correlation: {tools.chatterjee_correlation(x, y_linear):.4f}") print(f"Non-linear correlation: {tools.chatterjee_correlation(x, y_nonlinear):.4f}")

Source code in src/ds_tool.py
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
@staticmethod
def chatterjee_correlation(
    x: Union[np.ndarray, pd.Series, List[float]],
    y: Union[np.ndarray, pd.Series, List[float]],
    standard_flag: bool = True,
) -> float:
    """Calculates Chatterjee's rank correlation coefficient (Xi).

    This coefficient is a non-parametric measure of dependence between two
    variables. It is asymmetric and ranges from 0 to 1, where a value
    close to 1 indicates that y is a function of x. It can capture
    non-linear relationships.

    Args:
        x: Array-like, the first variable (independent).
        y: Array-like, the second variable (dependent).
        standard_flag: bool flag which define type of calculation

    Returns:
        The Chatterjee's correlation coefficient, a float between 0 and 1.

    Raises:
        ValueError: If the input arrays do not have the same length.

    Usage:
         x = np.linspace(0, 10, 100)
         y_linear = 2 * x + 1
         y_nonlinear = np.sin(x)
         tools = DSTools()
         print(f"Linear correlation: {tools.chatterjee_correlation(x, y_linear):.4f}")
         print(f"Non-linear correlation: {tools.chatterjee_correlation(x, y_nonlinear):.4f}")

    """
    # 1. Convert inputs to NumPy arrays and validate
    x_arr = np.asarray(x)
    y_arr = np.asarray(y)

    n = len(x_arr)
    if n != len(y_arr):
        raise ValueError("Input arrays x and y must have the same length.")

    if n < 2:
        return 0.0  # Correlation is undefined for less than 2 points

    # 2. Get the ranks of y based on the sorted order of x
    # argsort gives the indices that would sort x
    x_order_indices = np.argsort(x_arr)

    # Reorder y according to the sorted x
    y_ordered_by_x = y_arr[x_order_indices]

    # Calculate ranks of the reordered y. 'average' method handles ties.
    # This replaces the dependency on pandas.Series.rank()
    y_ranks = rankdata(y_ordered_by_x, method="average")

    # 3. Calculate the sum of absolute differences of consecutive ranks
    # np.diff calculates the difference between adjacent elements
    rank_diffs_sum = np.sum(np.abs(np.diff(y_ranks)))

    # 4. Calculate Chatterjee's Xi coefficient
    # The original formula is 1 - (3 * sum(|r_{i+1} - r_i|)) / (n^2 - 1)
    # An equivalent and more stable formula is used below.
    xi_orig = 1 - (n * rank_diffs_sum) / (
        2 * np.sum(np.abs(y_ranks - np.mean(y_ranks)) ** 2)
    )

    xi = 1 - (3 * rank_diffs_sum) / (n**2 - 1) if standard_flag else xi_orig

    return xi

check_NINF(data)

Check DataFrame or array for NaN and infinite values.

Parameters:

Name Type Description Default
data Union[DataFrame, ndarray]

Input data to check

required
Usage

tools = DSTools() tools.check_NINF(data)

Source code in src/ds_tool.py
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
def check_NINF(self, data: Union[pd.DataFrame, np.ndarray]) -> None:
    """Check DataFrame or array for NaN and infinite values.

    Args:
        data: Input data to check

    Usage:
         tools = DSTools()
         tools.check_NINF(data)

    """
    if isinstance(data, pd.DataFrame):
        has_nan = data.isnull().any().any()
        has_inf = np.isinf(data.select_dtypes(include=[np.number])).any().any()
    else:
        has_nan = np.isnan(data).any()
        has_inf = np.isinf(data).any()

    if not has_nan and not has_inf:
        print("Dataset has no NaN or infinite values")
    elif has_nan and not has_inf:
        print("Dataset has NaN values but no infinite values")
    elif not has_nan and has_inf:
        print("Dataset has infinite values but no NaN values")
    else:
        print("Dataset has both NaN and infinite values")

compute_metrics(y_true, y_predict, y_predict_proba, config=None)

Calculate main pre-selected classification metrics.

Parameters:

Name Type Description Default
y_true ndarray

True labels

required
y_predict ndarray

Predicted labels

required
y_predict_proba ndarray

Predicted probabilities

required
config Optional[MetricsConfig]

Configuration for metrics computation

None

Returns:

Type Description
DataFrame

DataFrame with calculated metrics

Usage

from ds_tool import DSTools, MetricsConfig tools = DSTools() metrics = tools.compute_metrics(y_test, y_pred, y_pred_proba)

Source code in src/ds_tool.py
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
def compute_metrics(
    self,
    y_true: np.ndarray,
    y_predict: np.ndarray,
    y_predict_proba: np.ndarray,
    config: Optional[MetricsConfig] = None,
) -> pd.DataFrame:
    """Calculate main pre-selected classification metrics.

    Args:
        y_true: True labels
        y_predict: Predicted labels
        y_predict_proba: Predicted probabilities
        config: Configuration for metrics computation

    Returns:
        DataFrame with calculated metrics

    Usage:
        from ds_tool import DSTools, MetricsConfig
        tools = DSTools()
        metrics = tools.compute_metrics(y_test, y_pred, y_pred_proba)

    """
    if config is None:
        config = MetricsConfig()

    metrics_dict = {}

    # Average Precision Score
    aps = average_precision_score(y_true, y_predict_proba) * 100
    metrics_dict["Average_precision, %"] = round(aps, 2)

    if config.print_values:
        print(f"Average_precision = {aps:.3f} %")

    # Balanced Accuracy Score
    bas = balanced_accuracy_score(y_true, y_predict) * 100
    metrics_dict["Balanced_accuracy, %"] = round(bas, 2)

    if config.print_values:
        print(f"Balanced_accuracy = {bas:.3f} %")

    # Likelihood Ratios
    clr = class_likelihood_ratios(y_true, y_predict)
    metrics_dict["Likelihood_ratios+"] = clr[0]
    metrics_dict["Likelihood_ratios-"] = clr[1]

    if config.print_values:
        print(
            f"Likelihood_ratios+ = {clr[0]:.3f}\nLikelihood_ratios- = {clr[1]:.3f}"
        )

    # Cohen's Kappa Score
    cks = cohen_kappa_score(y_true, y_predict) * 100
    metrics_dict["Kappa_score, %"] = round(cks, 2)

    if config.print_values:
        print(f"Kappa_score = {cks:.3f} %")

    # Hamming Loss
    hl = hamming_loss(y_true, y_predict) * 100
    metrics_dict["Incor_pred_labels (hamming_loss), %"] = round(hl, 2)

    if config.print_values:
        print(f"Incor_pred_labels (hamming_loss) = {hl:.3f} %")

    # Jaccard Score
    hs = jaccard_score(y_true, y_predict) * 100
    metrics_dict["Jaccard_similarity, %"] = round(hs, 2)

    if config.print_values:
        print(f"Jaccard_similarity = {hs:.3f} %")

    # Log Loss
    ls = log_loss(y_true, y_predict_proba)
    metrics_dict["Cross_entropy_loss"] = ls

    if config.print_values:
        print(f"Cross_entropy_loss = {ls:.3f}")

    # Correlation Coefficient
    cc = np.corrcoef(y_true, y_predict)[0][1] * 100
    metrics_dict["Coef_correlation, %"] = round(cc, 2)

    if config.print_values:
        print(f"Coef_correlation = {cc:.3f} %")

    # Error visualization
    if config.error_vis:
        fpr, fnr, thresholds = det_curve(y_true, y_predict_proba)
        plt.plot(thresholds, fpr, label="False Positive Rate (FPR)")
        plt.plot(thresholds, fnr, label="False Negative Rate (FNR)")
        plt.title("Error Rates vs Threshold Levels")
        plt.xlabel("Threshold Level")
        plt.ylabel("Error Rate")
        plt.legend()
        plt.grid(True)
        plt.show()

    return pd.DataFrame([metrics_dict])

corr_matrix(df, config=None)

Calculate and visualize correlation matrix.

Parameters:

Name Type Description Default
df DataFrame

Input DataFrame with numerical columns

required
config Optional[CorrelationConfig]

Configuration for correlation matrix visualization

None
Usage

from ds_tool import DSTools, CorrelationConfig tools = DSTools() tools.corr_matrix(df, CorrelationConfig(font_size=12))

Source code in src/ds_tool.py
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
def corr_matrix(
    self, df: pd.DataFrame, config: Optional[CorrelationConfig] = None
) -> None:
    """Calculate and visualize correlation matrix.

    Args:
        df: Input DataFrame with numerical columns
        config: Configuration for correlation matrix visualization

    Usage:
         from ds_tool import DSTools, CorrelationConfig
         tools = DSTools()
         tools.corr_matrix(df, CorrelationConfig(font_size=12))

    """
    if config is None:
        config = CorrelationConfig()

    # Calculate correlation matrix
    corr = df.corr(method=config.build_method)
    mask = np.triu(np.ones_like(corr, dtype=bool))

    # Determine figure size based on number of columns
    n_cols = len(df.columns)

    if n_cols < 5:
        fig_size = (8, 8)
    elif n_cols < 9:
        fig_size = (10, 10)
    elif n_cols < 15:
        fig_size = (22, 22)
    else:
        fig_size = config.image_size

    fig, ax = plt.subplots(figsize=fig_size)

    # Create heatmap
    ax = sns.heatmap(
        corr,
        annot=True,
        annot_kws={"size": config.font_size},
        fmt=".3f",
        center=0,
        linewidths=1.0,
        linecolor="black",
        square=True,
        cmap=sns.diverging_palette(20, 220, n=100),
        mask=mask,
    )

    # Customize x-axis
    ax.tick_params(
        axis="x",
        which="major",
        direction="inout",
        length=20,
        width=4,
        color="m",
        pad=10,
        labelsize=16,
        labelcolor="b",
        bottom=True,
        top=True,
        labelbottom=True,
        labeltop=True,
        labelrotation=85,
    )

    # Customize y-axis
    ax.tick_params(
        axis="y",
        which="major",
        direction="inout",
        length=20,
        width=4,
        color="m",
        pad=10,
        labelsize=16,
        labelcolor="r",
        left=True,
        right=False,
        labelleft=True,
        labelright=False,
        labelrotation=0,
    )

    ax.set_yticklabels(
        ax.get_yticklabels(), rotation=0, fontsize=16, verticalalignment="center"
    )

    plt.title(
        f"Correlation ({config.build_method}) matrix for selected features",
        fontsize=20,
    )
    plt.tight_layout()
    plt.show()

describe_categorical(df)

Detailed description of categorical columns.

Parameters:

Name Type Description Default
df DataFrame

Input DataFrame

required

Returns:

Type Description
DataFrame

DataFrame with categorical statistics

Usage

tools = DSTools() cat_stats = tools.describe_categorical(df)

Source code in src/ds_tool.py
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
def describe_categorical(self, df: pd.DataFrame) -> pd.DataFrame:
    """Detailed description of categorical columns.

    Args:
        df: Input DataFrame

    Returns:
        DataFrame with categorical statistics

    Usage:
         tools = DSTools()
         cat_stats = tools.describe_categorical(df)

    """
    # 1. Select columns with types 'object', 'category', 'string'
    categorical_cols = df.select_dtypes(
        include=["object", "category", "string"]
    ).columns.tolist()

    # 2. Find columns that ONLY consist of NaN (they can be of numeric type)
    all_nan_cols = df.columns[df.isnull().all()].tolist()

    # 3. Combine both lists and remove duplicates
    cols_to_process = sorted(set(categorical_cols + all_nan_cols))

    if not cols_to_process:
        return pd.DataFrame()

    # 4. Get basic descriptive statistics
    description = df[cols_to_process].describe(include="all").T

    # 5. Calculate the percentage of missing data
    missing_percent = (df[cols_to_process].isnull().sum() / len(df) * 100).round(1)

    # 6. Assemble the final DataFrame
    result_df = description
    result_df["missing (%)"] = missing_percent

    # 7. Order and clear the columns
    # Remove 'count', as it duplicates the information about missing data
    if "count" in result_df.columns:
        result_df = result_df.drop(columns="count")

    final_cols_order = ["missing (%)", "unique", "top", "freq"]

    # Leave only those columns from our ideal list that actually exist
    existing_cols = [col for col in final_cols_order if col in result_df.columns]

    return result_df[existing_cols]

describe_numeric(df)

Detailed description of numerical columns.

Parameters:

Name Type Description Default
df DataFrame

Input DataFrame

required

Returns:

Type Description
DataFrame

DataFrame with numerical statistics

Usage

tools = DSTools() num_stats = tools.describe_numeric(df)

Source code in src/ds_tool.py
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
def describe_numeric(self, df: pd.DataFrame) -> pd.DataFrame:
    """Detailed description of numerical columns.

    Args:
        df: Input DataFrame

    Returns:
        DataFrame with numerical statistics

    Usage:
         tools = DSTools()
         num_stats = tools.describe_numeric(df)

    """
    numeric_cols = df.select_dtypes(include=[np.number]).columns
    if len(numeric_cols) == 0:
        return pd.DataFrame()

    numeric_df = df[numeric_cols]
    description = numeric_df.describe()

    result_data = {
        "sum": numeric_df.sum(),
        "missing (%)": np.round(numeric_df.isnull().sum() / len(df) * 100, 1),
        "median": numeric_df.median(),
        "skew": numeric_df.skew(),
        "kurtosis": numeric_df.kurtosis(),
    }

    # Add description statistics
    for stat in description.index:
        if stat != "count":
            result_data[stat] = description.loc[stat]

    return pd.DataFrame(result_data, index=numeric_cols)

df_stats(df, return_format='dict', detailed=True)

Provide quick overview of DataFrame structure.

Parameters:

Name Type Description Default
df DataFrame

Input DataFrame

required
return_format str

Format of return ('dict' or 'dataframe')

'dict'
detailed bool

Include additional statistics

True

Returns:

Type Description
Union[dict, DataFrame]

dict or DataFrame with statistics

Source code in src/ds_tool.py
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
def df_stats(
    self, df: pd.DataFrame, return_format: str = "dict", detailed: bool = True
) -> Union[dict, pd.DataFrame]:
    """Provide quick overview of DataFrame structure.

    Args:
        df: Input DataFrame
        return_format: Format of return ('dict' or 'dataframe')
        detailed: Include additional statistics

    Returns:
        dict or DataFrame with statistics

    """
    stats = {
        "columns": df.shape[1],
        "rows": df.shape[0],
        "missing_percent": np.round(df.isnull().sum().sum() / df.size * 100, 1),
        "memory_mb": np.round(df.memory_usage(deep=True).sum() / 10**6, 1),
    }

    if detailed:
        stats.update(
            {
                "numeric_columns": df.select_dtypes(include=[np.number]).shape[1],
                "categorical_columns": df.select_dtypes(
                    include=["object", "category"]
                ).shape[1],
                "datetime_columns": df.select_dtypes(include=["datetime"]).shape[1],
                "duplicated_rows": df.duplicated().sum(),
                "total_missing_values": df.isnull().sum().sum(),
            }
        )

    if return_format.lower() == "dataframe":
        return pd.DataFrame(list(stats.items()), columns=["metric", "value"])
    else:
        return stats

evaluate_classification(true_labels, pred_probs, threshold=0.5, figsize=(16, 7)) staticmethod

Calculates, prints, and visualizes metrics for a binary classification model.

This "all-in-one" method provides a complete performance summary, including key scalar metrics, a classification report, a confusion matrix, and plots for ROC and Precision-Recall curves.

Parameters:

Name Type Description Default
true_labels ndarray

Array of true binary labels (0 or 1).

required
pred_probs ndarray

Array of predicted probabilities for the positive class.

required
threshold float

The cutoff to convert probabilities into binary predictions.

0.5
figsize Tuple[int, int]

The size of the figure for the plots.

(16, 7)

Returns:

Type Description
Dict[str, Any]

A dictionary containing the calculated metrics for programmatic use.

Source code in src/ds_tool.py
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
@staticmethod
def evaluate_classification(
    true_labels: np.ndarray,
    pred_probs: np.ndarray,
    threshold: float = 0.5,
    figsize: Tuple[int, int] = (16, 7),
) -> Dict[str, Any]:
    """Calculates, prints, and visualizes metrics for a binary classification model.

    This "all-in-one" method provides a complete performance summary, including
    key scalar metrics, a classification report, a confusion matrix, and
    plots for ROC and Precision-Recall curves.

    Args:
        true_labels: Array of true binary labels (0 or 1).
        pred_probs: Array of predicted probabilities for the positive class.
        threshold: The cutoff to convert probabilities into binary predictions.
        figsize: The size of the figure for the plots.

    Returns:
        A dictionary containing the calculated metrics for programmatic use.

    """
    # --- 1. Input Validation ---
    if not isinstance(true_labels, np.ndarray) or not isinstance(
        pred_probs, np.ndarray
    ):
        raise TypeError("Inputs true_labels and pred_probs must be NumPy arrays.")

    if true_labels.shape != pred_probs.shape:
        raise ValueError("Shape of true_labels and pred_probs must match.")

    # --- 2. Threshold-dependent Metrics ---
    pred_labels = (pred_probs >= threshold).astype(int)

    accuracy = accuracy_score(true_labels, pred_labels)
    report_dict = classification_report(
        true_labels, pred_labels, output_dict=True, zero_division=0
    )
    conf_matrix = confusion_matrix(true_labels, pred_labels)

    # --- 3. Threshold-independent Metrics ---
    fpr, tpr, _ = roc_curve(true_labels, pred_probs)
    ks = max(tpr - fpr)
    roc_auc = auc(fpr, tpr)
    avg_precision = average_precision_score(true_labels, pred_probs)
    precision, recall, _ = precision_recall_curve(true_labels, pred_probs)

    # --- 4. Console Output ---
    print("*" * 60)
    print(
        f"{'CLASSIFICATION METRICS SUMMARY (Threshold = ' + str(threshold) + ')':^60}"
    )
    print("*" * 60)
    print(f"  - Accuracy          : {accuracy:.4f}")
    print(f"  - ROC AUC           : {roc_auc:.4f}")
    print(f"  - Average Precision : {avg_precision:.4f}")
    print(f"  - Kolmogorov-Smirnov : {ks:.4f}")
    print("-" * 60)

    print(f"\n{'Classification Report':^60}\n")
    report_df = pd.DataFrame(report_dict).transpose()
    print(report_df.round(4))

    print(f"\n{'Confusion Matrix':^60}\n")
    print(
        pd.DataFrame(
            conf_matrix,
            index=["Actual 0", "Actual 1"],
            columns=["Predicted 0", "Predicted 1"],
        )
    )
    print("*" * 60)

    # --- 5. Visualization ---
    fig, (ax1, ax2) = plt.subplots(1, 2, figsize=figsize)
    plt.style.use("seaborn-v0_8-whitegrid")

    # Precision-Recall Curve
    ax1.step(recall, precision, color="b", alpha=0.8, where="post")
    ax1.fill_between(recall, precision, step="post", alpha=0.2, color="b")
    ax1.set_xlabel("Recall", fontsize=14)
    ax1.set_ylabel("Precision", fontsize=14)
    ax1.set_ylim([0.0, 1.05])
    ax1.set_xlim([0.0, 1.0])
    ax1.set_title(f"Precision-Recall Curve\nAP = {avg_precision:.2f}", fontsize=16)

    # ROC Curve
    ax2.plot(
        fpr,
        tpr,
        color="darkorange",
        lw=2,
        label=f"ROC curve (AUC = {roc_auc:.2f}, KS = {ks:.2f})",
    )
    ax2.plot([0, 1], [0, 1], color="navy", lw=2, linestyle="--")
    ax2.fill_between(
        fpr,
        tpr,
        fpr,
        where=(tpr >= fpr),
        alpha=0.3,
        color="green",
        interpolate=True,
        label="Above random",
    )
    ax2.set_xlim([0.0, 1.0])
    ax2.set_ylim([0.0, 1.05])
    ax2.set_xlabel("False Positive Rate", fontsize=14)
    ax2.set_ylabel("True Positive Rate", fontsize=14)
    ax2.set_title("Receiver Operating Characteristic (ROC)", fontsize=16)
    ax2.legend(loc="lower right", fontsize=12)

    plt.tight_layout()
    plt.show()

    # --- 6. Return Metrics Dictionary ---
    return {
        "threshold": threshold,
        "accuracy": accuracy,
        "roc_auc": roc_auc,
        "average_precision": avg_precision,
        "Kolmogorov-Smirnov": ks,
        "classification_report": report_dict,
        "confusion_matrix": conf_matrix,
    }

function_list()

Parses the list of available tools (the 'Agenda') from the class docstring as a formatted table (Pandas DataFrame).

pd.DataFrame: A DataFrame with 'Function Name' and 'Description' columns. Returns an empty DataFrame if the 'Agenda' section is not found.

Usage

pd.set_option('display.max_colwidth', 200) tools = DSTools() tools.function_list()

Source code in src/ds_tool.py
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
def function_list(self) -> pd.DataFrame:
    """Parses the list of available tools (the 'Agenda') from the class
    docstring as a formatted table (Pandas DataFrame).

    Returns:
    pd.DataFrame: A DataFrame with 'Function Name' and 'Description'
                  columns. Returns an empty DataFrame if the 'Agenda'
                  section is not found.

    Usage:
        pd.set_option('display.max_colwidth', 200)
        tools = DSTools()
        tools.function_list()

    """
    # 1. Get the main docstring of the class
    doc = self.__class__.__doc__

    if not doc:
        print("Warning: No documentation found for this class.")
        return pd.DataFrame(columns=["Function Name", "Description"])

    # 2. Find the 'Agenda' section
    match = re.search(r"Agenda:\s*---+\s*(.*)", doc, re.S)

    if not match:
        print("Warning: No 'Agenda' section found in the class documentation.")
        return pd.DataFrame(columns=["Function Name", "Description"])

    # 3. Parse the content with the robust regex method
    agenda_content = match.group(1).strip()
    lines = agenda_content.split("\n")

    tools_data = []
    current_entry = None
    entry_pattern = re.compile(r"^\s*([a-zA-Z0-9_]+):\s*(.*)")

    for line in lines:
        m = entry_pattern.match(line)
        if m:
            if current_entry:
                current_entry["Description"] = " ".join(
                    current_entry["Description"]
                ).strip()
                tools_data.append(current_entry)

            func_name = m.group(1)
            desc_part = m.group(2).strip()
            current_entry = {
                "Function Name": func_name,
                "Description": [desc_part] if desc_part else [],
            }
        elif current_entry and line.strip():
            current_entry["Description"].append(line.strip())

    if current_entry:
        current_entry["Description"] = " ".join(
            current_entry["Description"]
        ).strip()
        tools_data.append(current_entry)

    # 4. Create and return the DataFrame
    if not tools_data:
        print("Warning: No tools found in the Agenda.")
        return pd.DataFrame(columns=["Function Name", "Description"])
    out_df = pd.DataFrame(tools_data).iloc[1:]

    with pd.option_context(
        "display.max_colwidth",
        200,  # Макс. ширина колонки (в символах)
        "display.width",
        350,  # Общая ширина вывода
        "display.colheader_justify",
        "center",  # Выравнивание заголовков по левому краю
    ):
        return out_df

generate_alphanum_codes(n, length=8) staticmethod

Generates an array of random alphanumeric codes.

This method is optimized for performance by using NumPy vectorized operations.

Parameters:

Name Type Description Default
n int

The number of codes to generate.

required
length int

The length of each code.

8

Returns:

Type Description
ndarray

A NumPy array of strings, where each string is a random code.

Usage

tools = DSTools() codes = tools.generate_alphanum_codes(5, length=10) print(f"Generated codes:\n{codes}")

Source code in src/ds_tool.py
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
@staticmethod
def generate_alphanum_codes(n: int, length: int = 8) -> np.ndarray:
    r"""Generates an array of random alphanumeric codes.

    This method is optimized for performance by using NumPy vectorized operations.

    Args:
        n: The number of codes to generate.
        length: The length of each code.

    Returns:
        A NumPy array of strings, where each string is a random code.

    Usage:
        tools = DSTools()
        codes = tools.generate_alphanum_codes(5, length=10)
        print(f"Generated codes:\n{codes}")

    """
    if n < 0 or length < 0:
        raise ValueError("Number of codes (n) and length must be non-negative.")

    if length == 0:
        return np.full(n, "", dtype=str)

    # A clean, non-repeating alphabet
    alphabet = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
    alphabet_len = len(alphabet)

    # Generate all random indices at once
    random_indices = np.random.randint(0, alphabet_len, size=(n, length))

    # Use NumPy's advanced indexing to get characters
    # .view('S1') treats each character as a 1-byte string
    # .reshape converts back to the desired shape
    codes_as_chars = np.array(list(alphabet), dtype="S1")[random_indices]

    # .view('S{length}') joins the characters in each row into a single string
    # This is a highly optimized, low-level NumPy operation
    codes_as_bytes = codes_as_chars.view(f"S{length}")

    # Decode from bytes to a standard UTF-8 string array
    return np.char.decode(codes_as_bytes.flatten(), "utf-8")

generate_distribution(config)

Generates a distribution matching the provided statistical metrics.

This function creates a distribution by generating a base dataset with a shape defined by kurtosis, adds outliers, and then iteratively scales and shifts the data to match the target mean and standard deviation within a specified accuracy threshold.

Parameters:

Name Type Description Default
config DistributionConfig

A Pydantic model instance containing all configuration parameters.

required

Returns:

Type Description
ndarray

A NumPy array of numerical values with the specified properties.

Usage

tools = DSTools() config = DistributionConfig(

...     mean=100, median=95, std=15, min_val=50, max_val=200,
...     skewness=0.5, kurtosis=3.5, n=1000
... )
 data = tools.generate_distribution(config)
 print(f'Generated Mean: {np.mean(data):.2f}, Std: {np.std(data):.2f}')
Source code in src/ds_tool.py
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
def generate_distribution(self, config: DistributionConfig) -> np.ndarray:
    """Generates a distribution matching the provided statistical metrics.

    This function creates a distribution by generating a base dataset with a
    shape defined by kurtosis, adds outliers, and then iteratively scales
    and shifts the data to match the target mean and standard deviation
    within a specified accuracy threshold.

    Args:
        config: A Pydantic model instance containing all configuration parameters.

    Returns:
        A NumPy array of numerical values with the specified properties.

    Usage:
         tools = DSTools()
         config = DistributionConfig(
        ...     mean=100, median=95, std=15, min_val=50, max_val=200,
        ...     skewness=0.5, kurtosis=3.5, n=1000
        ... )
         data = tools.generate_distribution(config)
         print(f'Generated Mean: {np.mean(data):.2f}, Std: {np.std(data):.2f}')

    """
    if not self.validate_moments(config.std, config.skewness, config.kurtosis):
        raise ValueError("Invalid statistical moments")
    if config.min_val >= config.max_val:
        raise ValueError("max_val must be greater than min_val")

    num_outliers = int(config.n * config.outlier_ratio)
    num_base = config.n - num_outliers

    # --- 1. Generate Base Distribution ---
    # Generate a base distribution with a shape influenced by kurtosis.
    # Student's t-distribution is used for heavy tails (kurtosis > 3).
    if config.kurtosis > 3.5:
        # Lower degrees of freedom lead to heavier tails
        df = max(1, int(10 / (config.kurtosis - 2.5)))
        base_data = stats.t.rvs(df=df, size=num_base)
    else:
        base_data = np.random.standard_normal(size=num_base)

    # --- 2. Add Outliers ---
    # Generate outliers to further influence the tails.
    if num_outliers > 0:
        # Outliers are generated with a larger variance to be distinct.
        outlier_scale = config.std * (1 + config.kurtosis / 3)
        outliers = np.random.normal(loc=0, scale=outlier_scale, size=num_outliers)
        data = np.concatenate([base_data, outliers])
    else:
        data = base_data

    np.random.shuffle(data)

    # --- 3. Iterative Scaling and Shifting ---
    # Iteratively adjust the data to match the target mean and std.
    # This is more stable than trying to adjust all moments at once.
    max_iterations = 50

    for _ in range(max_iterations):
        current_mean = np.mean(data)
        current_std = np.std(data, ddof=1)

        # Check for convergence
        mean_ok = abs(current_mean - config.mean) < (
            abs(config.mean) * config.accuracy_threshold
        )
        std_ok = abs(current_std - config.std) < (
            config.std * config.accuracy_threshold
        )

        if mean_ok and std_ok:
            break

        # Rescale and shift the data
        if current_std > EPSILON:
            data = config.mean + (data - current_mean) * (config.std / current_std)
        else:
            # Handle case where all values are the same
            data = np.full_like(data, config.mean)

    # --- 4. Final Adjustments ---
    # Clip data to ensure it's within the min/max bounds
    data = np.clip(data, config.min_val, config.max_val)

    # Ensure min and max values are present in the final distribution
    # This can slightly alter the final moments but guarantees the range.
    if data.min() > config.min_val:
        data[np.argmin(data)] = config.min_val
    if data.max() < config.max_val:
        data[np.argmax(data)] = config.max_val

    return data

generate_distribution_from_metrics(n, metrics, int_flag=True, output_as='numpy', max_iterations=100)

Generates a synthetic distribution matching given statistical metrics.

This function uses an iterative approach to create a distribution that approximates the properties specified in the DistributionConfig.

Parameters:

Name Type Description Default
n int

Number of values to generate.

required
metrics Union[DistributionConfig, Dict[str, float]]

A Pydantic DistributionConfig instance OR a dictionary with the target statistical properties.

required
int_flag bool

If True, returns integer values; otherwise, floats.

True
output_as Literal['numpy', 'pandas', 'polars']

The desired output format ('numpy', 'pandas', or 'polars').

'numpy'
max_iterations int

int value is a number of iterations for tries.

100

Returns:

Type Description
Union[ndarray, Series, Series]

An array or Series of generated values.

Usage

tools = DSTools() try: metrics_dict = DistributionConfig( mean=1042, median=330, std=1500, min_val=1, max_val=120000, skewness=13.2, kurtosis=245, n=10000, accuracy_threshold=0.05, outlier_ratio=0.05 )

# 2. Generate the data using the metrics object
generated_data = tools.generate_distribution_from_metrics(
    n=1000,
    metrics=metrics_dict,
    int_flag=True,
    output_as='numpy'
)

# 3. Analyze the result
print("--- Target vs. Actual Statistics ---")
print(f"Target Mean: {metrics.mean}, Actual Mean: {np.mean(generated_data):.2f}")
print(f"Target Median: {metrics.median}, Actual Median: {np.median(generated_data):.2f}")
print(f"Target Std: {metrics.std}, Actual Std: {np.std(generated_data):.2f}")
print(f"Target Skew: {metrics.skewness}, Actual Skew: {stats.skew(generated_data):.2f}")
print(f"Target Kurtosis: {metrics.kurtosis}, Actual Kurtosis: {stats.kurtosis(generated_data, fisher=False):.2f}")
print(f"Target Min: {metrics.min_val}, Actual Min: {np.min(generated_data):.2f}")
print(f"Target Max: {metrics.max_val}, Actual Max: {np.max(generated_data):.2f}")

except ValueError as e: print(f"Error during configuration or generation: {e}")

Source code in src/ds_tool.py
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
def generate_distribution_from_metrics(
    self,
    n: int,
    metrics: Union[DistributionConfig, Dict[str, float]],
    int_flag: bool = True,
    output_as: Literal["numpy", "pandas", "polars"] = "numpy",
    max_iterations: int = 100,
) -> Union[np.ndarray, pd.Series, pl.Series]:
    """Generates a synthetic distribution matching given statistical metrics.

    This function uses an iterative approach to create a distribution that
    approximates the properties specified in the DistributionConfig.

    Args:
        n: Number of values to generate.
        metrics: A Pydantic `DistributionConfig` instance OR a dictionary
                 with the target statistical properties.
        int_flag: If True, returns integer values; otherwise, floats.
        output_as: The desired output format ('numpy', 'pandas', or 'polars').
        max_iterations: int value is a number of iterations for tries.

    Returns:
        An array or Series of generated values.

    Usage:
        tools = DSTools()
        try:
            metrics_dict = DistributionConfig(
                mean=1042,
                median=330,
                std=1500,
                min_val=1,
                max_val=120000,
                skewness=13.2,
                kurtosis=245,
                n=10000,
                accuracy_threshold=0.05,
                outlier_ratio=0.05
            )

            # 2. Generate the data using the metrics object
            generated_data = tools.generate_distribution_from_metrics(
                n=1000,
                metrics=metrics_dict,
                int_flag=True,
                output_as='numpy'
            )

            # 3. Analyze the result
            print("--- Target vs. Actual Statistics ---")
            print(f"Target Mean: {metrics.mean}, Actual Mean: {np.mean(generated_data):.2f}")
            print(f"Target Median: {metrics.median}, Actual Median: {np.median(generated_data):.2f}")
            print(f"Target Std: {metrics.std}, Actual Std: {np.std(generated_data):.2f}")
            print(f"Target Skew: {metrics.skewness}, Actual Skew: {stats.skew(generated_data):.2f}")
            print(f"Target Kurtosis: {metrics.kurtosis}, Actual Kurtosis: {stats.kurtosis(generated_data, fisher=False):.2f}")
            print(f"Target Min: {metrics.min_val}, Actual Min: {np.min(generated_data):.2f}")
            print(f"Target Max: {metrics.max_val}, Actual Max: {np.max(generated_data):.2f}")

        except ValueError as e:
            print(f"Error during configuration or generation: {e}")

    """
    if isinstance(metrics, dict):
        try:
            config = DistributionConfig(**metrics)
        except Exception as e:
            raise ValueError(f"Invalid metrics dictionary: {e}")
    elif isinstance(metrics, DistributionConfig):
        config = metrics
    else:
        raise TypeError("Invalid metrics dictionary")

    if config.n is None:
        config.n = n
    elif config.n != n:
        print(
            f"Warning: `n` provided in both arguments ({n}) and config ({config.n}). "
            f"Using value from arguments: {n}."
        )
        config.n = n

    if not self.validate_moments(config.std, config.skewness, config.kurtosis):
        raise ValueError("Invalid metrics dictionary")

    # --- 1. Initial Data Generation ---
    num_outliers = int(config.n * config.outlier_ratio)
    num_base = config.n - num_outliers

    # Generate the main part of the distribution
    # Use a non-central t-distribution to introduce initial skew
    nc = config.skewness * (config.kurtosis / 3.0)  # Heuristic for non-centrality
    df = max(
        5, int(6 + 2 * (config.kurtosis - 3))
    )  # Degrees of freedom influence kurtosis

    base_data = stats.nct.rvs(df=df, nc=nc, size=num_base)

    # Generate outliers to control the tails
    if num_outliers > 0:
        # Generate outliers from a wider normal distribution
        outlier_scale = config.std * (1.5 + config.kurtosis / 5.0)
        outliers = np.random.normal(
            loc=config.mean, scale=outlier_scale, size=num_outliers
        )
        data = np.concatenate([base_data, outliers])
    else:
        data = base_data

    np.random.shuffle(data)

    # Initial scaling to get closer to the target
    data = config.mean + (data - np.mean(data)) * (
        config.std / (np.std(data) + EPSILON)
    )

    # --- 2. Iterative Adjustment ---
    for _ in range(max_iterations):
        # Calculate current moments
        current_mean = np.mean(data)
        current_std = np.std(data, ddof=1)
        current_median = np.median(data)

        # Check for convergence on primary metrics (mean, std, median)
        mean_ok = abs(current_mean - config.mean) < (
            abs(config.mean) * config.accuracy_threshold
        )
        std_ok = abs(current_std - config.std) < (
            config.std * config.accuracy_threshold
        )
        median_ok = abs(current_median - config.median) < (
            abs(config.median) * config.accuracy_threshold
        )

        if mean_ok and std_ok and median_ok:
            break

        # Adjustment for mean and std (rescale and shift)
        if current_std > EPSILON:
            data = config.mean + (data - current_mean) * (config.std / current_std)

        # Adjustment for median (gentle push towards the target)
        median_diff = config.median - np.median(data)
        # Apply a non-linear shift to move the median without ruining the mean/std too much
        data += (
            median_diff
            * np.exp(-(((data - np.median(data)) / config.std) ** 2))
            * 0.1
        )

    # --- 3. Finalization ---
    # Final clipping and type casting
    data = np.clip(data, config.min_val, config.max_val)

    # Ensure min/max values are present
    if data.min() > config.min_val:
        data[np.argmin(data)] = config.min_val

    if data.max() < config.max_val:
        data[np.argmax(data)] = config.max_val

    if int_flag:
        data = np.round(data).astype(np.int64)

    # Convert to desired output format
    if output_as == "pandas":
        return pd.Series(data, name="generated_values")
    elif output_as == "polars":
        return pl.Series(name="generated_values", values=data)
    else:
        return data

grubbs_test(x, alpha=0.05) staticmethod

Performs Grubbs' test to identify a single outlier in a dataset.

This test assumes the data comes from a normally distributed population and is designed to detect one outlier at a time.

Parameters:

Name Type Description Default
x Union[ndarray, Series]

A 1D NumPy array or Pandas Series of numerical data.

required
alpha float

The significance level for the test (default: 0.05).

0.05

Returns:

Type Description
GrubbsTestResult

A Pydantic model (GrubbsTestResult) containing the test results,

GrubbsTestResult

including a boolean flag for outlier detection and the outlier's value

GrubbsTestResult

and index if found.

Raises:

Type Description
ValueError

If the input array has fewer than 3 elements.

Usage

tools = DSTools()

Test 1: Data with an outlier

print("\nTesting on data WITH an outlier:") result1 = tools.grubbs_test(data_with_outlier) print(f" Calculated G-statistic: {result1.g_calculated:.4f}") print(f" Critical G-value: {result1.g_critical:.4f}") if result1.is_outlier: print(f"Outlier detected: The value is {result1.outlier_value:.2f} at index {result1.outlier_index}.") else: print("No outlier detected.")

Test 2: Data without an outlier

print("\nTesting on data WITHOUT an outlier:") result2 = tools.grubbs_test(data_without_outlier) print(f" Calculated G-statistic: {result2.g_calculated:.4f}") print(f" Critical G-value: {result2.g_critical:.4f}") if result2.is_outlier: print(f"Outlier detected, but shouldn't have been.") else: print("Correctly determined that there are no outliers.")

Source code in src/ds_tool.py
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
@staticmethod
def grubbs_test(
    x: Union[np.ndarray, pd.Series], alpha: float = 0.05
) -> GrubbsTestResult:
    r"""Performs Grubbs' test to identify a single outlier in a dataset.

    This test assumes the data comes from a normally distributed population
    and is designed to detect one outlier at a time.

    Args:
        x: A 1D NumPy array or Pandas Series of numerical data.
        alpha: The significance level for the test (default: 0.05).

    Returns:
        A Pydantic model (GrubbsTestResult) containing the test results,
        including a boolean flag for outlier detection and the outlier's value
        and index if found.

    Raises:
        ValueError: If the input array has fewer than 3 elements.

    Usage:
        tools = DSTools()

        # Test 1: Data with an outlier
        print("\nTesting on data WITH an outlier:")
        result1 = tools.grubbs_test(data_with_outlier)
        print(f"  Calculated G-statistic: {result1.g_calculated:.4f}")
        print(f"  Critical G-value: {result1.g_critical:.4f}")
        if result1.is_outlier:
            print(f"Outlier detected: The value is {result1.outlier_value:.2f} at index {result1.outlier_index}.")
        else:
            print("No outlier detected.")

        # Test 2: Data without an outlier
        print("\nTesting on data WITHOUT an outlier:")
        result2 = tools.grubbs_test(data_without_outlier)
        print(f"  Calculated G-statistic: {result2.g_calculated:.4f}")
        print(f"  Critical G-value: {result2.g_critical:.4f}")
        if result2.is_outlier:
            print(f"Outlier detected, but shouldn't have been.")
        else:
            print("Correctly determined that there are no outliers.")

    """
    if not isinstance(x, (np.ndarray, pd.Series)):
        raise TypeError("Input data x must be a NumPy array or Pandas Series.")

    # Grubbs' test requires at least 3 data points
    n = len(x)
    if n < 3:
        raise ValueError("Grubbs test requires at least 3 data points.")

    # Convert to numpy array for calculations
    data = np.array(x)

    # 1. Calculate the G-statistic
    mean_x = np.mean(data)
    std_x = np.std(data, ddof=1)  # Use sample standard deviation

    if np.isclose(std_x, 0):
        # If all values are the same, there are no outliers
        return GrubbsTestResult(
            is_outlier=False,
            g_calculated=0.0,
            g_critical=np.inf,  # Critical value is irrelevant here
            outlier_value=None,
            outlier_index=None,
        )

    max_deviation_index = np.argmax(np.abs(data - mean_x))
    max_deviation_value = data[max_deviation_index]

    numerator = np.abs(max_deviation_value - mean_x)
    g_calculated = numerator / std_x

    # 2. Calculate the critical G-value
    t_value = stats.t.ppf(1 - alpha / (2 * n), n - 2)

    numerator_critical = (n - 1) * t_value
    denominator_critical = np.sqrt(n * (n - 2 + t_value**2))
    g_critical = numerator_critical / denominator_critical

    # 3. Compare and determine the result
    is_outlier_detected = g_calculated > g_critical

    return GrubbsTestResult(
        is_outlier=is_outlier_detected,
        g_calculated=g_calculated,
        g_critical=g_critical,
        outlier_value=max_deviation_value if is_outlier_detected else None,
        outlier_index=int(max_deviation_index) if is_outlier_detected else None,
    )

labeling(df, col_name, order_flag=True)

Encode categorical variables with optional ordering.

Parameters:

Name Type Description Default
df DataFrame

Input DataFrame

required
col_name str

Column name for transformation

required
order_flag bool

Whether to apply ordering based on frequency

True

Returns:

Type Description
DataFrame

DataFrame with encoded column

Usage

tools = DSTools() df = tools.labeling(df, 'category_column', True)

Source code in src/ds_tool.py
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
def labeling(
    self, df: pd.DataFrame, col_name: str, order_flag: bool = True
) -> pd.DataFrame:
    """Encode categorical variables with optional ordering.

    Args:
        df: Input DataFrame
        col_name: Column name for transformation
        order_flag: Whether to apply ordering based on frequency

    Returns:
        DataFrame with encoded column

    Usage:
         tools = DSTools()
         df = tools.labeling(df, 'category_column', True)

    """
    if col_name not in df.columns:
        raise ValueError(f"Column {col_name} not found in DataFrame")

    df_copy = df.copy()
    unique_values = df_copy[col_name].unique()
    value_index = dict(zip(unique_values, range(len(unique_values))))
    print(f"Set of unique indexes for <{col_name}>:\n{value_index}")

    if order_flag:
        counts = (
            df_copy[col_name]
            .value_counts(normalize=True)
            .sort_values()
            .index.tolist()
        )
        counts_dict = {val: i for i, val in enumerate(counts)}
        encoder = OrdinalEncoder(categories=[list(counts_dict.keys())], dtype=int)
    else:
        encoder = OrdinalEncoder(dtype=int)

    df_copy[col_name] = encoder.fit_transform(df_copy[[col_name]])
    return df_copy

min_max_scale(df, columns=None, const_val_fill=0.0) staticmethod

Scales specified columns of a DataFrame to the range [0, 1].

This method applies Min-Max scaling. If a column contains identical values, it will be filled with const_val_fill. The original DataFrame is not modified.

Parameters:

Name Type Description Default
df Union[DataFrame, DataFrame]

The input DataFrame (Pandas or Polars).

required
columns Optional[List[str]]

A list of column names to scale. If None (default), all numerical columns will be scaled.

None
const_val_fill float

The value to use for columns where all values are identical (to avoid division by zero).

0.0

Returns:

Type Description
Union[DataFrame, DataFrame]

A new DataFrame with the specified columns scaled.

Usage

tools = DSTools() pd_scaled = tools.min_max_scale(pd_data, columns=['a', 'c']) print("\nPandas DataFrame with scaled columns 'a' and 'c':") print(pd_scaled)

pl_scaled = tools.min_max_scale(pl_data) # Scale all numeric columns print("\nPolars DataFrame with all numeric columns scaled:") print(pl_scaled)

pl_scaled_half = tools.min_max_scale(pl_data, const_val_fill=0.5) print("\nPolars DataFrame with constant columns filled with 0.5:") print(pl_scaled_half)

Source code in src/ds_tool.py
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
@staticmethod
def min_max_scale(
    df: Union[pd.DataFrame, pl.DataFrame],
    columns: Optional[List[str]] = None,
    const_val_fill: float = 0.0,
) -> Union[pd.DataFrame, pl.DataFrame]:
    r"""Scales specified columns of a DataFrame to the range [0, 1].

    This method applies Min-Max scaling. If a column contains identical
    values, it will be filled with `const_val_fill`. The original
    DataFrame is not modified.

    Args:
        df: The input DataFrame (Pandas or Polars).
        columns: A list of column names to scale. If None (default),
                 all numerical columns will be scaled.
        const_val_fill: The value to use for columns where all values
                        are identical (to avoid division by zero).

    Returns:
        A new DataFrame with the specified columns scaled.

    Usage:
        tools = DSTools()
        pd_scaled = tools.min_max_scale(pd_data, columns=['a', 'c'])
        print("\nPandas DataFrame with scaled columns 'a' and 'c':")
        print(pd_scaled)

        pl_scaled = tools.min_max_scale(pl_data) # Scale all numeric columns
        print("\nPolars DataFrame with all numeric columns scaled:")
        print(pl_scaled)

        pl_scaled_half = tools.min_max_scale(pl_data, const_val_fill=0.5)
        print("\nPolars DataFrame with constant columns filled with 0.5:")
        print(pl_scaled_half)

    """
    if isinstance(df, pd.DataFrame):
        # --- Pandas Implementation ---
        df_new = df.copy()

        if columns is None:
            # Select all numeric columns if none are specified
            columns = df_new.select_dtypes(include=np.number).columns.tolist()

        for col in columns:
            if col not in df_new.columns:
                print(f"Warning: Column '{col}' not found in DataFrame. Skipping.")
                continue

            min_val = df_new[col].min()
            max_val = df_new[col].max()

            if min_val == max_val:
                df_new[col] = const_val_fill
            else:
                df_new[col] = (df_new[col] - min_val) / (max_val - min_val)

        return df_new

    elif isinstance(df, pl.DataFrame):
        # --- Polars Implementation ---

        if columns is None:
            # Select all numeric columns
            columns = [
                col for col, dtype in df.schema.items() if dtype.is_numeric()
            ]

        expressions = []
        for col in columns:
            if col not in df.columns:
                print(f"Warning: Column '{col}' not found in DataFrame. Skipping.")
                continue

            min_val = pl.col(col).min()
            max_val = pl.col(col).max()

            # Use a 'when/then/otherwise' expression for conditional logic
            expr = (
                pl.when(min_val == max_val)
                .then(pl.lit(const_val_fill))
                .otherwise((pl.col(col) - min_val) / (max_val - min_val))
                .alias(col)  # Keep the original column name
            )
            expressions.append(expr)

        return df.with_columns(expressions)

    else:
        raise TypeError("Input dataframe must be a Pandas or Polars DataFrame.")

plot_confusion_matrix(y_true, y_pred, class_labels=None, figsize=(8, 8), title='Confusion Matrix', cmap='Blues') staticmethod

Plots a clear and readable confusion matrix using seaborn.

This method visualizes the performance of a classification model by showing the number of correct and incorrect predictions for each class.

Parameters:

Name Type Description Default
y_true Union[ndarray, Series]

Array-like of true labels.

required
y_pred Union[ndarray, Series]

Array-like of predicted labels.

required
class_labels Optional[List[str]]

Optional list of strings to use as labels for the axes. If None, integer labels will be used.

None
figsize Tuple[int, int]

Tuple specifying the figure size.

(8, 8)
title str

The title for the plot.

'Confusion Matrix'
cmap str

The colormap to use for the heatmap.

'Blues'

Usage: tools = DSTools()

tools.plot_confusion_matrix(
    y_true_binary,
    y_pred_binary,
    class_labels=['Negative (0)', 'Positive (1)'],
    title='Binary Confusion Matrix'
)
tools.plot_confusion_matrix(
    y_true_multi,
    y_pred_multi,
    class_labels=['Cat', 'Dog', 'Bird'],
    title='Multi-Class Confusion Matrix'
)
Source code in src/ds_tool.py
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
@staticmethod
def plot_confusion_matrix(
    y_true: Union[np.ndarray, pd.Series],
    y_pred: Union[np.ndarray, pd.Series],
    class_labels: Optional[List[str]] = None,
    figsize: Tuple[int, int] = (8, 8),
    title: str = "Confusion Matrix",
    cmap: str = "Blues",
):
    """Plots a clear and readable confusion matrix using seaborn.

    This method visualizes the performance of a classification model by showing
    the number of correct and incorrect predictions for each class.

    Args:
        y_true: Array-like of true labels.
        y_pred: Array-like of predicted labels.
        class_labels: Optional list of strings to use as labels for the axes.
                      If None, integer labels will be used.
        figsize: Tuple specifying the figure size.
        title: The title for the plot.
        cmap: The colormap to use for the heatmap.
    Usage:
        tools = DSTools()

        tools.plot_confusion_matrix(
            y_true_binary,
            y_pred_binary,
            class_labels=['Negative (0)', 'Positive (1)'],
            title='Binary Confusion Matrix'
        )
        tools.plot_confusion_matrix(
            y_true_multi,
            y_pred_multi,
            class_labels=['Cat', 'Dog', 'Bird'],
            title='Multi-Class Confusion Matrix'
        )

    """
    # 1. Calculate the confusion matrix
    cm = confusion_matrix(y_true, y_pred)

    # 2. Determine labels for the axes
    if class_labels:
        if len(class_labels) != cm.shape[0]:
            raise ValueError(
                f"Number of class_labels ({len(class_labels)}) does not match "
                f"number of classes in confusion matrix ({cm.shape[0]})."
            )
        labels = class_labels
    else:
        labels = np.arange(cm.shape[0])

    # 3. Create the plot using seaborn's heatmap for better aesthetics
    plt.style.use("seaborn-v0_8-whitegrid")
    fig, ax = plt.subplots(figsize=figsize)

    sns.heatmap(
        cm,
        annot=True,  # Display the numbers in the cells
        fmt="d",  # Format numbers as integers
        cmap=cmap,  # Use the specified colormap
        xticklabels=labels,
        yticklabels=labels,
        ax=ax,  # Draw on our created axes
        annot_kws={"size": 14},  # Increase annotation font size
    )

    # 4. Set titles and labels for clarity
    ax.set_title(title, fontsize=16, pad=20)
    ax.set_xlabel("Predicted Label", fontsize=14)
    ax.set_ylabel("True Label", fontsize=14)

    # Rotate tick labels for better readability if they are long
    plt.xticks(rotation=45, ha="right")
    plt.yticks(rotation=0)

    plt.tight_layout()
    plt.show()

read_dataframes_from_zip(zip_filename, format='parquet', backend='polars') staticmethod

Reads one or more DataFrames from a ZIP archive.

Parameters:

Name Type Description Default
zip_filename str

The path to the ZIP archive.

required
format str

The format of the files inside the ZIP ('parquet', 'csv').

'parquet'
backend str

The library to use for reading ('polars' or 'pandas').

'polars'

Returns:

Type Description
Dict[str, Union[DataFrame, DataFrame]]

A dictionary where keys are the filenames (without extension) and

Dict[str, Union[DataFrame, DataFrame]]

values are the loaded DataFrames.

Source code in src/ds_tool.py
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
@staticmethod
def read_dataframes_from_zip(
    zip_filename: str, format: str = "parquet", backend: str = "polars"
) -> Dict[str, Union[pd.DataFrame, pl.DataFrame]]:
    """Reads one or more DataFrames from a ZIP archive.

    Args:
        zip_filename: The path to the ZIP archive.
        format: The format of the files inside the ZIP ('parquet', 'csv').
        backend: The library to use for reading ('polars' or 'pandas').

    Returns:
        A dictionary where keys are the filenames (without extension) and
        values are the loaded DataFrames.

    """
    if backend not in ["polars", "pandas"]:
        raise ValueError("`backend` must be 'polars' or 'pandas'.")

    loaded_dataframes = {}

    with tempfile.TemporaryDirectory() as temp_dir:
        with zipfile.ZipFile(zip_filename, "r") as zipf:
            zipf.extractall(temp_dir)

        extension = f".{format}"
        for filename in os.listdir(temp_dir):
            if filename.endswith(extension):
                file_path = os.path.join(temp_dir, filename)
                name_without_ext = os.path.splitext(filename)[0]

                # --- Dispatch based on a chosen backend ---
                if backend == "polars":
                    df = (
                        pl.read_parquet(file_path)
                        if format == "parquet"
                        else pl.read_csv(file_path)
                    )
                else:  # backend == 'pandas'
                    if format == "parquet":
                        try:
                            # First we try to read how Parquet
                            df = pd.read_parquet(file_path)
                        except Exception:
                            # If it didn't work (as in your test),
                            # try to read as CSV
                            df = pd.read_csv(file_path)
                    else:  # format == 'csv', original logic for для CSV
                        try:
                            df = pd.read_csv(file_path, index_col=0)
                        except (ValueError, IndexError):
                            df = pd.read_csv(file_path)

                loaded_dataframes[name_without_ext] = df

    print(
        f"Successfully loaded {len(loaded_dataframes)} DataFrame(s) using {backend}."
    )
    return loaded_dataframes

remove_outliers_iqr(df, column_name, config=None)

Remove outliers using IQR (Inter Quartile Range) method.

Parameters:

Name Type Description Default
df DataFrame

Input DataFrame

required
column_name str

Target column name

required
config Optional[OutlierConfig]

Configuration for outlier removal

None

Returns:

Type Description
Union[DataFrame, Tuple[DataFrame, float, float]]

Modified DataFrame, optionally with outlier percentages

Usage

from ds_tool import DSTools, OutlierConfig tools = DSTools() config_custom = OutlierConfig(sigma=1.0, percentage=False) df_clean = tools.remove_outliers_iqr(df, 'target_column', config=config_custom) df_replaced, p_upper, p_lower = tools.remove_outliers_iqr(df, 'target_column')

Source code in src/ds_tool.py
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
def remove_outliers_iqr(
    self, df: pd.DataFrame, column_name: str, config: Optional[OutlierConfig] = None
) -> Union[pd.DataFrame, Tuple[pd.DataFrame, float, float]]:
    """Remove outliers using IQR (Inter Quartile Range) method.

    Args:
        df: Input DataFrame
        column_name: Target column name
        config: Configuration for outlier removal

    Returns:
        Modified DataFrame, optionally with outlier percentages

    Usage:
         from ds_tool import DSTools, OutlierConfig
         tools = DSTools()
         config_custom = OutlierConfig(sigma=1.0, percentage=False)
         df_clean = tools.remove_outliers_iqr(df, 'target_column', config=config_custom)
         df_replaced, p_upper, p_lower = tools.remove_outliers_iqr(df, 'target_column')

    """
    if config is None:
        config = OutlierConfig()

    if column_name not in df.columns:
        raise ValueError(f"Column {column_name} not found in DataFrame")

    df_copy = df.copy()
    target = df_copy[column_name]

    q1 = target.quantile(0.25)
    q3 = target.quantile(0.75)
    iqr = q3 - q1
    iqr_lower = q1 - config.sigma * iqr
    iqr_upper = q3 + config.sigma * iqr

    outliers_upper = target > iqr_upper
    outliers_lower = target < iqr_lower

    if config.change_remove:
        df_copy.loc[outliers_upper, column_name] = iqr_upper
        df_copy.loc[outliers_lower, column_name] = iqr_lower
    else:
        df_copy = df_copy[~(outliers_upper | outliers_lower)]

    if config.percentage:
        percent_upper = round(outliers_upper.sum() / len(df) * 100, 2)
        percent_lower = round(outliers_lower.sum() / len(df) * 100, 2)
        return df_copy, percent_upper, percent_lower

    return df_copy

save_dataframes_to_zip(dataframes, zip_filename, format='parquet', save_index=False) staticmethod

Saves one or more Pandas or Polars DataFrames into a single ZIP archive.

Parameters:

Name Type Description Default
dataframes Dict[str, Union[DataFrame, DataFrame]]

A dictionary where keys are the desired filenames (without extension) and values are the Pandas or Polars DataFrames.

required
zip_filename str

The path for the output ZIP archive.

required
format str

The format to save the data in ('parquet', 'csv').

'parquet'
save_index bool

For Pandas DataFrames, whether to save the index. (Ignored for Polars).

False
Usage

tools = DSTools() dfs_to_save = { 'pandas_data': pd_df, 'polars_data': pl_df } zip_path = 'mixed_data_archive.zip' print("\n--- Saving mixed DataFrames ---") tools.save_dataframes_to_zip(dfs_to_save, zip_path, format='parquet', save_index=True)

print("\n--- Reading back with Polars backend ---") loaded_with_polars = tools.read_dataframes_from_zip(zip_path, format='parquet', backend='polars') print("DataFrame 'pandas_data' loaded by Polars:") print(loaded_with_polars['pandas_data']) # The index will be lost because Polars does not have it.

print("\n--- Reading back with Pandas backend ---") loaded_with_pandas = tools.read_dataframes_from_zip(zip_path, format='parquet', backend='pandas') print("DataFrame 'pandas_data' loaded by Pandas:") print(loaded_with_pandas['pandas_data']) # The index will be restored

if os.path.exists(zip_path): os.remove(zip_path)

Source code in src/ds_tool.py
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
@staticmethod
def save_dataframes_to_zip(
    dataframes: Dict[str, Union[pd.DataFrame, pl.DataFrame]],
    zip_filename: str,
    format: str = "parquet",
    save_index: bool = False,
):
    r"""Saves one or more Pandas or Polars DataFrames into a single ZIP archive.

    Args:
        dataframes: A dictionary where keys are the desired filenames (without
                    extension) and values are the Pandas or Polars DataFrames.
        zip_filename: The path for the output ZIP archive.
        format: The format to save the data in ('parquet', 'csv').
        save_index: For Pandas DataFrames, whether to save the index.
                    (Ignored for Polars).

    Usage:
        tools = DSTools()
        dfs_to_save = {
            'pandas_data': pd_df,
            'polars_data': pl_df
        }
        zip_path = 'mixed_data_archive.zip'
        print("\n--- Saving mixed DataFrames ---")
        tools.save_dataframes_to_zip(dfs_to_save, zip_path, format='parquet', save_index=True)

        print("\n--- Reading back with Polars backend ---")
        loaded_with_polars = tools.read_dataframes_from_zip(zip_path, format='parquet', backend='polars')
        print("DataFrame 'pandas_data' loaded by Polars:")
        print(loaded_with_polars['pandas_data']) # The index will be lost because Polars does not have it.

        print("\n--- Reading back with Pandas backend ---")
        loaded_with_pandas = tools.read_dataframes_from_zip(zip_path, format='parquet', backend='pandas')
        print("DataFrame 'pandas_data' loaded by Pandas:")
        print(loaded_with_pandas['pandas_data']) # The index will be restored

        if os.path.exists(zip_path):
        os.remove(zip_path)

    """
    if not isinstance(dataframes, dict):
        raise TypeError("`dataframes` must be a dictionary of {filename: df}.")

    with tempfile.TemporaryDirectory() as temp_dir:
        file_paths = []

        for name, df in dataframes.items():
            safe_name = re.sub(r'[\\/*?:"<>|]', "_", name)
            file_path = os.path.join(temp_dir, f"{safe_name}.{format}")
            file_paths.append(file_path)

            # --- Dispatch based on DataFrame type ---
            if isinstance(df, pd.DataFrame):
                if format == "parquet":
                    df.to_parquet(file_path, index=save_index, engine="fastparquet")
                elif format == "csv":
                    df.to_csv(file_path, index=save_index)
                else:
                    raise ValueError(f"Unsupported format: '{format}'.")
            elif isinstance(df, pl.DataFrame):
                if format == "parquet":
                    df.write_parquet(file_path)
                elif format == "csv":
                    df.write_csv(file_path)
                else:
                    raise ValueError(f"Unsupported format: '{format}'.")
            else:
                raise TypeError(f"Unsupported DataFrame type: {type(df)}")

        # Create the ZIP archive
        with zipfile.ZipFile(zip_filename, "w", zipfile.ZIP_DEFLATED) as zipf:
            for path in file_paths:
                zipf.write(path, os.path.basename(path))

    print(f"Successfully saved {len(dataframes)} DataFrame(s) to {zip_filename}")

sparse_calc(df)

Calculate sparsity level as coefficient.

Parameters:

Name Type Description Default
df DataFrame

Input DataFrame

required

Returns:

Type Description
float

Sparsity coefficient as percentage

Usage

tools = DSTools() sparsity = tools.sparse_calc(df)

Source code in src/ds_tool.py
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
def sparse_calc(self, df: pd.DataFrame) -> float:
    """Calculate sparsity level as coefficient.

    Args:
        df: Input DataFrame

    Returns:
        Sparsity coefficient as percentage

    Usage:
         tools = DSTools()
         sparsity = tools.sparse_calc(df)

    """
    sparse_coef = round(df.apply(pd.arrays.SparseArray).sparse.density * 100, 2)
    print(f"Level of sparsity = {sparse_coef} %")

    return sparse_coef

stat_normal_testing(check_object, describe_flag=False)

Perform D'Agostino's K² test for normality testing.

Parameters:

Name Type Description Default
check_object Union[DataFrame, Series]

Input data (DataFrame or Series)

required
describe_flag bool

Whether to show descriptive statistics

False
Usage

tools = DSTools()

tools.stat_normal_testing(data, describe_flag=True)

Source code in src/ds_tool.py
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
def stat_normal_testing(
    self, check_object: Union[pd.DataFrame, pd.Series], describe_flag: bool = False
) -> None:
    """Perform D'Agostino's K² test for normality testing.

    Args:
        check_object: Input data (DataFrame or Series)
        describe_flag: Whether to show descriptive statistics

    Usage:
         tools = DSTools()

         tools.stat_normal_testing(data, describe_flag=True)

    """
    if isinstance(check_object, pd.DataFrame) and len(check_object.columns) == 1:
        check_object = check_object.iloc[:, 0]

    # Perform normality test
    stat, p_value = stats.normaltest(check_object)
    print(f"Statistics = {stat:.3f}, p = {p_value:.3f}")

    alpha = 0.05
    if p_value > alpha:
        print("Data looks Gaussian (fail to reject H0). Data is normal")
    else:
        print("Data does not look Gaussian (reject H0). Data is not normal")

    # Calculate kurtosis and skewness
    kurtosis_val = stats.kurtosis(check_object)
    skewness_val = stats.skew(check_object)

    print(f"\nKurtosis: {kurtosis_val:.3f}")

    if abs(kurtosis_val) < 0.1:
        print("Distribution has normal tail weight")
    elif kurtosis_val > 0:
        print("Distribution has heavier tails than normal")
    else:  # kurtosis_val < -0.1
        print("Distribution has lighter tails than normal")

    print(f"\nSkewness: {skewness_val:.3f}")
    if -0.5 <= skewness_val <= 0.5:
        print("Data are fairly symmetrical")
    elif skewness_val < -1 or skewness_val > 1:
        print("Data are highly skewed")
    else:
        print("Data are moderately skewed")

    # Visualization
    sns.displot(check_object, bins=30)
    plt.title("Distribution of the data")
    plt.show()

    if describe_flag:
        print("\nDescriptive Statistics:")
        print(check_object.describe())

        fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 6))

        ax1.hist(check_object, bins=50, edgecolor="black")
        ax1.set_title("Histogram")
        ax1.set_xlabel("Values")
        ax1.set_ylabel("Frequency")

        stats.probplot(check_object, dist="norm", plot=ax2)
        ax2.set_title("Q-Q Plot")

        plt.tight_layout()
        plt.show()

test_stationarity(check_object, print_results_flag=True, len_window=30)

Perform Dickey-Fuller test for stationarity testing.

Parameters:

Name Type Description Default
check_object Series

Input time series data

required
print_results_flag bool

Whether to print detailed results

True
len_window int

length of a window, default is 30

30
Usage

tools = DSTools() tools.test_stationarity(time_series, print_results_flag=True)

Source code in src/ds_tool.py
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
def test_stationarity(
    self,
    check_object: pd.Series,
    print_results_flag: bool = True,
    len_window: int = 30,
) -> None:
    """Perform Dickey-Fuller test for stationarity testing.

    Args:
        check_object: Input time series data
        print_results_flag: Whether to print detailed results
        len_window: length of a window, default is 30

    Usage:
         tools = DSTools()
         tools.test_stationarity(time_series, print_results_flag=True)

    """
    # Calculate rolling statistics
    rolling_mean = check_object.rolling(window=len_window).mean()
    rolling_std = check_object.rolling(window=len_window).std()

    # Plot rolling statistics
    fig, ax = plt.subplots(figsize=(12, 6))
    ax.plot(check_object, color="blue", label="Original", linewidth=2)
    ax.plot(rolling_mean, color="red", label="Rolling Mean", linewidth=2)
    ax.plot(rolling_std, color="black", label="Rolling Std", linewidth=2)

    ax.legend(loc="upper left")
    ax.set_title("Rolling Mean & Standard Deviation")
    ax.grid(True, alpha=0.3)
    plt.tight_layout()
    plt.show()
    plt.close(fig)

    # Perform Dickey-Fuller test
    adf_result = adfuller(check_object, autolag="AIC")
    adf_output = pd.Series(
        adf_result[0:4],
        index=[
            "Test Statistic",
            "p-value",
            "Lags Used",
            "Number of Observations Used",
        ],
    )

    for key, value in adf_result[4].items():
        adf_output[f"Critical Value ({key})"] = value

    if print_results_flag:
        print("Results of Dickey-Fuller Test:")
        print(adf_output)

    # Interpret results
    if adf_output["p-value"] <= 0.05:
        print("\nData does not have a unit root. Data is STATIONARY!")
    else:
        print("\nData has a unit root. Data is NON-STATIONARY!")

trials_res_df(study_trials, metric)

Aggregate Optuna optimization trials as DataFrame.

Parameters:

Name Type Description Default
study_trials List[Any]

List of Optuna trials (study.trials)

required
metric str

Metric name for sorting (e.g., 'MCC', 'F1')

required

Returns:

Type Description
DataFrame

DataFrame with aggregated trial results

Usage

tools = DSTools() results = tools.trials_res_df(study.trials, 'MCC')

Source code in src/ds_tool.py
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
def trials_res_df(self, study_trials: List[Any], metric: str) -> pd.DataFrame:
    """Aggregate Optuna optimization trials as DataFrame.

    Args:
        study_trials: List of Optuna trials (study.trials)
        metric: Metric name for sorting (e.g., 'MCC', 'F1')

    Returns:
        DataFrame with aggregated trial results

    Usage:
         tools = DSTools()
         results = tools.trials_res_df(study.trials, 'MCC')

    """
    df_results = pd.DataFrame()

    for trial in study_trials:
        if trial.value is None:
            continue

        trial_data = pd.DataFrame.from_dict(trial.params, orient="index").T
        trial_data.insert(0, metric, trial.value)

        if trial.datetime_complete and trial.datetime_start:
            duration = (
                trial.datetime_complete - trial.datetime_start
            ).total_seconds()
            trial_data["Duration"] = duration

        df_results = pd.concat([df_results, trial_data], ignore_index=True)

    df_results = df_results.sort_values(metric, ascending=False)

    for col in df_results.columns:
        if col not in [metric, "Duration"]:
            df_results[col] = pd.to_numeric(df_results[col], errors="coerce")

    return df_results

validate_moments(std, skewness, kurtosis) staticmethod

Validate that statistical moments are physically possible. A key property is that kurtosis must be greater than or equal to the square of skewness minus 2.

Parameters:

Name Type Description Default
std float

Standard deviation

required
skewness float

Skewness value

required
kurtosis float

Kurtosis value

required

Returns:

Type Description
bool

True if moments are valid, False otherwise

Usage

tools = DSTools() is_valid = tools.validate_moments(1.0, 0.5, 3.0)

Source code in src/ds_tool.py
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
@staticmethod
def validate_moments(std: float, skewness: float, kurtosis: float) -> bool:
    """Validate that statistical moments are physically possible.
    A key property is that kurtosis must be greater than or equal to
    the square of skewness minus 2.

    Args:
        std: Standard deviation
        skewness: Skewness value
        kurtosis: Kurtosis value

    Returns:
        True if moments are valid, False otherwise

    Usage:
         tools = DSTools()
         is_valid = tools.validate_moments(1.0, 0.5, 3.0)

    """
    return std > 0 and kurtosis >= (skewness**2 - 2)